Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Số số hạng là : (1002-12):10 +1 = 100 ;
Tổng của H là : (1002+12)*100/2 = 50700
Xong ròi :))
a) \(\left|-4x+1\frac{1}{3}\right|=x+2\frac{1}{7}\)
TH1: \(-4x+1\frac{1}{3}=x+2\frac{1}{7}\)
\(-4x-x=2\frac{1}{7}-1\frac{1}{3}\)
\(-5x=\frac{17}{21}\)
=> ...
TH2: \(-4x+1\frac{1}{3}=-x-2\frac{1}{7}\)
...
rùi bn tự lm típ nha!
b) 22x-1+4x+2 = 264
=> 22x: 2 + (22)x+2=264
22x.1/2 + 22x+4=264
22x.1/2 + 22x.24 = 264
22x.(1/2 + 24) = 264
22x. 33/2 = 264
22x = 16
22x = 24
=> 2x = 4
x = 2
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
a)gọi d là ƯCLN (3n-1;6n-3)
\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)
=> (6n-3)-(6n-2)\(⋮\)d
\(\Rightarrow1⋮d\)
=>d=1
\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)
b) Gọi d là ƯCLN(2n+11;3n+16)
\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d=1
Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)
Tớ giải xong rồi ai nhớ nha k cho tôi đi.
\(a,2^{x+2}-2^x=96\)
\(=>2^x.2^2-2^x=96\)
\(=>2^x.\left(4-1\right)=96\)
\(=>2^x.3=96\)
\(=>2^x=96:3=32\)
\(=>2^x=2^5\)
\(=>x=5\)
\(b,720:\left[41.\left(2x-5\right)\right]=2^3.125:5^2\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.125:25\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.5=40\)
\(=>41.\left(2x-5\right)=720:40=18\)
\(=>2x-5=18:41=\frac{18}{41}\)
\(=>2x=\frac{18}{41}+5=\frac{223}{41}\)
\(=>x=\frac{223}{41}:2=\frac{223}{62}\)
\(c,\left(-2x+7\right)^{19}=\left(-2x+7\right)^{19}.\left(x+1\frac{1}{4}\right)^2\)
\(=>\left(-2x+7\right)^{19}:\left(-2x+7\right)^{19}=\left(x+\frac{5}{4}\right)^2\)
\(=>1=\left(x+\frac{5}{4}\right)^2\)
\(=>1^2=\left(x+\frac{5}{4}\right)^2\)
\(=>1=x+\frac{5}{4}\)
\(=>x=1-\frac{5}{4}=-\frac{1}{4}\)
Chúc bạn Hk tốt!!!!
Và giữ đúng lời hứa trên@@!!!!!
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.