Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2+x-\dfrac{1}{2}\)
\(=-\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)
-x^ - x - 1 = - (x^2+x+1) = - (x^2+x+1/4+3/4) = - [(x+1/2)^2 +3/4) ]
Ta có [(X+1/2)^2+3/4 lớn hơn hoặc bằng 3/4 => - [(x+1/2)^2+3/4] nhỏ hơn hoặc bằng -3/4 <0
\(-\left(x^2+x+1\right)\Rightarrow-\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\right]\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\Rightarrow\le0\)
\(\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)+x^3+\dfrac{1}{x^3}}\)
\(=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+2+\dfrac{1}{x^6}\right)}{\left(x+\dfrac{1}{x}\right)+\left(x^3+\dfrac{1}{x^3}\right)}\)
\(=\dfrac{\left[\left(x+\dfrac{1}{x}\right)^3\right]^2-\left(x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\)
\(=\left(x+\dfrac{1}{x}\right)^3-\left(x^3+\dfrac{1}{x^3}\right)\)
\(=3x+\dfrac{3}{x}\)
\(=3\left(x+\dfrac{1}{x}\right)\)
Áp dụng bất đẳng thức \(x+\dfrac{1}{x}\ge2\forall x>0\)
\(\Rightarrow3\left(x+\dfrac{1}{x}\right)\ge6\)
\(\Rightarrowđpcm\)
Akai Haruma Ace Legona Unruly Kid
ai đi ngang qua cứu e vs :((
Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^2+x+1}{x^2-x+1}\)
b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=>A>0 với mọi x<>-1
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)
Vì \(0< x< \dfrac{1}{2}\) áp dụng BĐT Cauchy-Schwarz dạng Engel
\(\dfrac{1}{x}+\dfrac{2}{1-2x}=\dfrac{2}{2x}+\dfrac{2}{1-2x}=2\left(\dfrac{1}{2x}+\dfrac{1}{1-2x}\right)\)
\(\ge2.\dfrac{\left(1+1\right)^2}{2x+1-2x}=\dfrac{2.4}{1}=8\)
Đẳng thức xảy ra \(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{1-2x}\Leftrightarrow x=\dfrac{1}{4}\)
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}-1\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Ta có :
\(-\left(x-\dfrac{1}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}< 0\forall x\)
hay \(x-x^2-1< 0\forall x\)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
\(-x^2+x-\dfrac{1}{2}\)
\(=-\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)