K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)

\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)

=>A là số hữu tỉ (ĐPCM)

28 tháng 10 2017

bạn chứng minh bài toán tổng quát :  \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)rồi áp dụng vào giải bài này nhé 

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

6 tháng 7 2018

\(\text{a) }\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ =\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\\ =\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)

\(\text{b) }\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\\ =1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =2016+\dfrac{1}{2}-\dfrac{1}{2018}\\ =\dfrac{2034698}{1009}\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)

\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán suy ra:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)

26 tháng 8 2017

\(=\dfrac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}-\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2017}-\sqrt{2018}\right)}\)

\(=\dfrac{\sqrt{1}+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{2017-2018}\)

\(=-\left(\sqrt{1}+\sqrt{2}\right)+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2017}+\sqrt{2018}\right)\)

\(=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...-\sqrt{2017}-\sqrt{2018}\)

\(=-\sqrt{1}-\sqrt{2018}\)

\(A=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}=2+\dfrac{1}{4}=\dfrac{9}{4}\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:
Xét số hạng tổng quát:

$\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}$

$=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}$

$=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$

Do đó:

$S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}$

$=1-\frac{1}{\sqrt{2017}}$