K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

A =5n3 +15n2 +10n

=5n(n2 +3n+2)

=5n(n+1)(n+2)

Bạn tự CM : n(n+1)(n+2) chia hết cho 2;3 => chia hết cho 6

=> A chia hết cho 5.6 =30

\(5n^3+15n^2+10n\)

\(=x\left(x+1\right)\left(x+2\right)\)

Ta có : \(x;x+1;x+2\)là 3 số tự nhiên liên tiếp 

=> \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 ; 3 ; 6 => \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 30 ( đpcm )

21 tháng 7 2016

\(A=5n^3+15n^2+10n\)

\(=5n^3+5n^2+10n^2+10n\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=\left(n+1\right)\left(5n^2+10n\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

do \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n;n+1;n+2\)chia hết cho 6

\(\Rightarrow A\)chia hết cho 5 và 6

mà 5 và 6 là 2 số nguyên tố cùng nhau

\(\Rightarrow A\)chia hết cho 30 (dpcm)

Chúc pn hk tốt ^-^

18 tháng 7 2016

Ta có:

5n3 + 15n2 + 10n

= 5n.(n2 + 3n + 2)

= 5n.(n2 + n + 2n + 2)

= 5n.[n.(n + 1) + 2.(n + 1)]

= 5n.[(n + 1).(n + 2)]

= 5.n.(n + 1).(n + 2)

Vì n.(n + 1).(n + 2) là tích 3 số tự nhiên liên tiếp nên n.(n + 1).(n + 2) chia hết cho 2 và 3

Mà (2;3)=1 => n.(n + 1).(n + 2) chia hết cho 6

=> 5.n.(n + 1).(n + 2) chia hết cho 30

=> 5n3 + 15n2 + 10n chia hết cho 30 (đpcm)

18 tháng 7 2016

\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)

thấy n (n + 1) (n + 2) là tích 3 số nguyên liên tiếp

=> có 1 số chia hết cho 2     ( n(n+1) tích 2 số liên tiếp )

=> có 1 số chia hết cho 3     ( n(n+1)(n+2) là tích 3 số liên tiếp)

=>  n(n+1)(n+2) chia hết cho 2.3  =>  n(n+1)(n+2) chia hết cho 6

=> 5n(n+1)(n+2) chia hết cho 30  (đpcm)

28 tháng 9 2016

mình cần câu hỏi này

5n^3 + 15n^2 +10n

=(5n^3 + 15n^2+ 10n) 

= 30n^6 chia hết cho 30

28 tháng 9 2016

Ta có : 5n3+15n2+10n

=5n(n2+3n+2)

Ta thấy : 5 chia hết cho 30 

Hay : 5n chia hết cho 30

Vậy đpcm

25 tháng 11 2015

Ta có

2002.2004=(2003-1)(2003+1)

=2003^2-1(hằng đẳng thức hiệu 2 bình phương<2003^2

Mình giải 2 câu rùi đó nhớ tick he

25 tháng 11 2015

a) Ta có

\(5n^3+15n^2+10n=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là 3 số nguyên liên tiếp

=>n(n+1)(n+2)chia hết cho 6.Mà (5;6)=1

=>5n(n+1)(n+2) chia hết cho 30

 

 

 

 

8 tháng 7 2016

\(5n^3+15n^2+10n\)

\(=\left(5n^3+5n^2\right)+\left(10n^2+10n\right)\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=n\left(n+1\right)\left(5n+10\right)\)

\(=n\left(n+1\right)\left(n+2\right).5\)

Vì \(n\left(n+1\right)\left(n+2\right)\)là tích 3 số tự nhiên liên tiếp nên chia hết cho 6; tức tích \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 6.

Tích \(n\left(n+1\right)\left(n+2\right).5\) thừa số 5 nên chia hết cho 5.

Mà ƯCLN ( 5;6) = 1 nên \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 5.6 = 30

Vậy \(5n^3+15n^2+10n\)chia hết cho 30

15 tháng 10 2017

Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn

Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)

Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)

\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)

16 tháng 10 2017

thiếu nhé

vì UCLN(5,6)=1 nên A chia hết cho 5.6=30

22 tháng 6 2017

\(=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=\left(5n^2+10n\right)\left(n+1\right)\)\(=5n\left(n+2\right)\left(n+1\right)\)

Đây là tích của ba số tự nhiên liên tiếp với 5

Ta thây trong ba số đó phải có 1 số chia hết cho 1, 1 số chia hết cho 2 và 1 số chia hết cho 3

suy ra tích của 3 số liên tiếp chia hết cho 1x2x3=6

Mà tích trên  là tích của ba số tự nhiên liên tiếp với 5 nên tích trên phải chia hết cho : 6x5=30;

vậy tích trên chia hết cho 30;

Ủng hộ nha bạn

10 tháng 10 2017

5n3 + 15n2 + 10n

= 5n(n2 + 3n + 2)

= 5n(n2 + n + 2n + 2)

= 5n[n(n + 1) + 2(n + 1)]

= 5n(n + 1)(n + 2)

Ta phân tích : 30 = 2 . 3 . 5

Ta thấy biểu thức trên chia hết cho 5 và là tích giữa số 5 với 3 số liên tiếp. (1)

Mà 3 số liên tiếp luôn luôn chia hết cho 6. Suy ra 3 số liên tiếp cũng chia hết cho 2 và 3 (2)

Từ (1) và (2) suy ra tích trên chia hết cho 2,3,5

Vậy biểu thức trên chia hết cho 30.