Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2^99 999 + 2^100 000 + 2^100 001
= 2^99 999.1 + 2^99 999.2 + 2^99 999.4
=2^99 999.(1+2+4)
=2^99 999.7=> chia hết cho 7.
Vì số có chữ số tận cùng bằng 1 khi nâng lên lũy thừa là 1.
Nên 100...0012 (có n chữ số 0) sẽ có chữ số tận cùng là 1.
Học tốt ~~
Lê Thị Như Ý09/12/2014 lúc 21:06 Trả lời 5 Đánh dấu
1, Chữ số tận cùng của 22009 là ?
2, Chữ số tận cùng của 71993 là ?
3, Chữ số tận cùng của 21 + 22 + ... + 2100 là ?
4, Chữ số tận cùng của 20092008 là ?
5, Chữ số tận cùng của 171000 là?
6, Chữ số tận cùng của 2.4.6. ... .48 - 1.3.5. ... .49 là ?
a, 333...333 (100 chữ số 3).333...33(100 chữ số 3)
= 333...3332(100 chữ số 3)
b, A = (100 - 1).(100 - 2)....(100- n)
Vì tích trên có 100 thừa số nên n = 100
Vậy A = (100 - 1).(100 -2)...(100 - 100)
A = (100 - 1).(100 - 2)...0
A = 0
Bài 2:
a, 25.\(x\) - 34 = 22.5 + 2.(7\(x\) + 4) + 2160
25\(x\) - 81 = 20 + 14\(x\) + 8 + 1
25\(x\) - 14\(x\) = 20 + 8 + 1 + 81
11\(x\) = 110
\(x\) = \(\dfrac{110}{11}\)
Bài 1;
A= 2+2^2+2^3+...+2^60= (2+2^2)+(2^3+2^4)+...+(2^59+2^60)
= (2+2^2).(1+2^2+...+2^58)=6.(1+2^2+...+2^58) chia hết cho 3 (ĐPCM)
A= 2+2^2+2^3+...+2^60= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
= (2+2^2+2^3).(1+2^3+...+2^57)= 14.(1+2^3+...+2^57) chia hết cho 7(ĐPCM)
Tương tự chứng minh A chai hết cho 15 ta có
A= (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
= (2+2^2+2^3+2^4).(1+2^4+...+2^56)= 30.(1+2^4+...+2^56) chia hết cho 15 (ĐPCM)
A=2.(1+2)+2^3(1+2)+.................+2^59(1+2)
A=2.3+2^3.3+..............+2^59.3
A+3(2+.....+2^59) chia hết cho 3
A=2(1+2+2^2)+...................+2^58(1+2+4)
A=2.7+.........+2^58.7
A=7(2+........+2^58) chia hết cho 7
A=2(1+2+4+8)+...........+2^57(1+2+4+8)
A+2.15+.....+2^57.15
A=15(2+......+2^57) chia hết cho 15
bài hai thì tự đi tìm hiểu