K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: - x2 - 1 = 0

           -x2      = 1

           -1        = x2

             x2        =  -1

vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm

K CHO MIK NHA

6 tháng 5 2018

Đặt \(f\left(x\right)=-x^2-1=-\left(x^2+1\right)\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+1>0\)với mọi giá trị của x

=> \(-\left(x^2+1\right)< 0\)với mọi giá trị của x

Vậy \(f\left(x\right)=-x^2-1\)vô nghiệm (đpcm)

Cách bạn làm ở trên đúng.

30 tháng 8 2015

(x - 1)x + 2 = (x - 1)x + 6

(x - 1)x + 2 - (x - 1)x + 6 = 0

(x - 1)x + 2.[1 - (x - 1)x + 4] = 0

\(\Rightarrow\) (x - 1)x + 2 = 0 hoặc 1 - (x - 1)x + 4 = 0

\(\Rightarrow\) x - 1 = 0 hoặc (x - 1)x + 4 = 1

\(\Rightarrow\) x = 1 hoặc x - 1 = 1 hoặc x - 1 = - 1

\(\Rightarrow\) x = 1 hoặc x = 2 hoặc x = 0

Vậy \(x\in\left\{0;1;2\right\}\)

\(\text{Bài 4:}\)

\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)

\(b.\left|-5,5\right|=5,5\)

\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)

25 tháng 4 2016

\(\frac{1}{16}<\left(\frac{1}{2}\right)^n<\frac{1}{4}\)

\(\left(\frac{1}{2}\right)^4<\left(\frac{1}{2}\right)^n<\left(\frac{1}{2}\right)^2\)

2 < n < 4 => n = 3

4 tháng 9 2017

1a, Ta có : 2S=2+2^2+2^3+...+2^51

=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)

=> S = 2^51-1

Vậy S < 2^51

1,b 24^54.54^24.2^10 chia hết 72^63 

24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24... 

=(2^3)^54.3^54.(3^3)^24.2^24.2^10 

= 2^162.2^24.2^10.3^54.3^72 

=2^196.3^126 

72^63=(2^3.3^2)^63 

=(2^3)^63(.3^2)^63=2^189.3^126 

vì 2^196.3^126 chia hết 2^189.3^126 

=>24^54.54^24.2^10 chia hết 72^63 

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n

= 3^(n+2) + 3^n - [2^(n+2) + 2^n] 


Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)

 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|

=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0

Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003

Th1 : 2x ≤ 4003

=> M ≥ 4003-2x ≥ 0

Để m nho nhat thi 2x phai lon nhat 

=> 2x=4003=>x=\(\frac{4003}{2}\)

M ≥ 4003-4003=0                  

Th2 2x ≥ 4003

M ≥ 2x-4003 ≥0

Để M nho nhat thi 2x phai nho nhat

=> 2x=4003=>x=4003/2

M ≥ 4003 -4003=0

Tu 2 truong hop tren ta co GTNN cua M la 0

Xay ra khi x=4003/2

4 tháng 9 2017

Để M đạt GTNN thì:

|x-2002|+|x-2001|> hoặc = 0

Vì |x-2002|> hoặc = 0

|x-2001|> hoặc = 0

Nếu |x-2002|=0

=>x-2002=0

x=2002+0

x=2002

Thay x=2002 ta có:

|2002-2002|+|2002-2001|

=|0|+|1|

=0+1

=1

=> GTNN của M=1

12 tháng 3 2018

a) ta có: \(M=\left(\frac{1}{3}a-\frac{1}{3}b\right)-\left(a+2b\right)\)

\(M=\frac{1}{3}a-\frac{1}{3}b-a-2b\)

\(M=(\frac{1}{3}a-a)+\left(\frac{-1}{3}b-2b\right)\)

\(M=\frac{-2}{3}a+\frac{-7}{3}b\)

\(N=\frac{1}{3}a-\frac{1}{3}b-\left(a-b\right)\)

\(N=\frac{1}{3}a-\frac{1}{3}b-a+b\)

\(N=\left(\frac{1}{3}a-a\right)+\left(b-\frac{1}{3}b\right)\)

\(N=\frac{-2}{3}a+\frac{2}{3}b\)

\(\Rightarrow M+N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)+\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)

                      \(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{-2}{3}a+\frac{2}{3}b\)

                        \(=\left(\frac{-2}{3}a-\frac{2}{3}a\right)+\left(\frac{-7}{3}b+\frac{2}{3}b\right)\)

                           \(=\frac{-4}{3}a+\frac{-5}{3}b\)

\(\Rightarrow M+N=\frac{-4}{3}a-\frac{5}{3}b\)

ta có: \(M-N=\left(\frac{-2}{3}a+\frac{-7}{3}b\right)-\left(\frac{-2}{3}a+\frac{2}{3}b\right)\)

                          \(=\frac{-2}{3}a+\frac{-7}{3}b+\frac{2}{3}a-\frac{2}{3}b\)

                           \(=\left(\frac{-2}{3}a+\frac{2}{3}a\right)+\left(\frac{-7}{3}b-\frac{2}{3}b\right)\)

                            \(=0+\frac{-10}{3}b=\frac{-10}{3}b\)

\(\Rightarrow M-N=\frac{-10}{3}b\)

b) ta có: \(M=2a^2+ab-b^2-\left(-a^2+b^2-ab\right)\)

               \(M=2a^2+ab-b^2+a^2-b^2+ab\)

               \(M=\left(2a^2+a^2\right)+\left(ab+ab\right)+\left(-b^2-b^2\right)\)

                 \(M=3a^2+2ab+\left(-2b^2\right)\)

\(N=3a^2+b^2-\left(ab-a^2\right)\)

\(N=3a^2+b^2-ab+a^2\)

\(N=\left(3a^2+a^2\right)+b^2-ab\)

\(N=4a^2+b^2-ab\)

rồi bn tính như mk phần a nha!

c) ta có:  \(M=\left(x+cy-z\right)+y+x-\left(z-x-y\right)\)

                 \(M=x+cy-z+y+x-z+x+y\)          

              \(M=\left(x+x+x\right)+\left(y+y\right)+\left(-z-z\right)+cy\)    

              \(M=3x+2y+\left(-2z\right)+cy\)

\(N=x-\left(x-\left(y-z\right)-x\right)\)

\(N=x-\left(x-y+z-x\right)\)

\(N=x-x+y-z+x\)

\(N=\left(x-x+x\right)+y-z\)

\(N=x+y-z\)

bn tính giúp mk cộng trừ 2 đa thức M; N luôn nha! mk chỉ rút gọn cho bn thôi

CHÚC BN HỌC TỐT!!!!