Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : 4(x - 5) - 3(x + 7) = -19
<=> 4x - 20 - 3x - 21 = -19
=> x - 41 = -19
=> x = -19 + 41
=> x = 22
b) Ta có " 7(x - 3) - 5(3 - x) = 11x - 5
<=> 7x - 21 - 15 + 5x = 11x - 5
<=> 12x - 36 = 11x - 5
=> 12x - 11x = -5 + 36
=> x = 31
a) \(2\left(x-5\right)-3\left(x+7\right)=14\)
\(\Leftrightarrow2x-10-3x-21=14\)
\(\Leftrightarrow-x-31=14\)
\(\Leftrightarrow-x=45\Leftrightarrow x=-45\)
b) \(5\left(x-6\right)-2\left(x+3\right)=12\)
\(\Leftrightarrow5x-30-2x-6=12\)
\(\Leftrightarrow3x-36=12\)
\(\Leftrightarrow3x=48\Leftrightarrow x=16\)
c) \(3\left(x-4\right)-\left(8-x\right)=12\)
\(\Leftrightarrow3x-12-8+x=12\)
\(\Leftrightarrow4x-20=12\)
\(\Leftrightarrow4x=32\Leftrightarrow x=8\)
d) \(-7\left(3x-5\right)+2\left(7x-14\right)=28\)
\(\Leftrightarrow-21x+35+14x-28=28\)
\(\Leftrightarrow-7x+35=0\Leftrightarrow x=5\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|=\left(\left|x-1\right|+\left|x-7\right|\right)+\left(\left|x-3\right|+\left|x-5\right|\right)\\ \)
\(=\left(\left|x-1\right|+\left|7-x\right|\right)+\left(\left|x-3\right|+\left|5-x\right|\right)\)
\(\ge\left|x-1+7-x\right|+\left|x-3+5-x\right|=\left|6\right|+\left|2\right|=8\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=\left(\left|x+1\right|+\left|x+3\right|\right)+\left|x+5\right|=\left(\left|x+1\right|+\left|3-x\right|\right)+\left|x+5\right|\)
\(\ge\left|x+1+3-x\right|+\left|x+5\right|=\left|4\right|+\left|x+5\right|=4+\left|x+5\right|\ge4\)
\(\left|x-1\right|+2\left|x-3\right|+\left|x-5\right|=\left(\left|x-1\right|+\left|x-5\right|\right)+2\left|x-3\right|=\left(\left|x-1\right|+\left|5-x\right|\right)+2\left|x-3\right|\)
\(\ge\left|x-1+5-x\right|+2\left|x-3\right|=\left|4\right|+2\left|x-3\right|=4+2\left|x-3\right|\ge4\)