K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

=)điều giả sử đúng =)điều phải chứng minh

20 tháng 4 2022

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

 

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

 

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

 

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

 

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

 

=)điều giả sử đúng =)điều phải chứng minh

20 tháng 6 2017

a)Ta có:\(a^2-ab+b^2=a^2-2.\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\)

                                        \(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

                       Vì \(\left(a-\frac{1}{2}b\right)^2\ge0;\frac{3}{4}b^2\ge0\)

              \(\Rightarrow\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Vậy \(a^2-ab+b^2\ge0\)

b)Tương tự với a

20 tháng 6 2017

b)a^2 +ab +b^2 = a^2 +ab +(b/2 )^2+ 3b^2/4 
= (a+b/2)^2 +3b^2/4 sẽ lớn hơn hoặc bằng 0

Ta có:

VT= a2 + b2 + c2 +\(\frac{21}{4}\)a2 + b+ c2 + \(\frac{16}{4}+\frac{5}{4}\)= a2 + b+ c2 + 4 + \(\frac{5}{4}\) 

Mà a2b2, c2 \(\ge\) 0 (bình phương một số luôn lớn hơn hoặc bằng 0) 

Vậy,  a2 + b+ c+ 4 + \(\frac{5}{4}\) \(\ge\) 4 + \(\frac{5}{4}\) hay a2 + b+ c2 +\(\frac{21}{4}\)\(\ge\) 4

 
17 tháng 5 2019

Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)

Áp dụng bất đẳng thức trị tuyệt đối,ta có:

\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)

Tự tìm dấu bằng xảy ra -.-

6 tháng 11 2018

a2+b2+c2\(\ge\) ab + bc + ca 

\(\Leftrightarrow a^2+b^2+c^2-ab-ba-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (BĐT đúng)

Do đó \(a^2+b^2+c^2\ge ab+bc+ac\)   là BĐT đúng.

3 tháng 10 2020

a2 + b2 + c2 ≥ ab + bc + ca

<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> a = b = c

8 tháng 10 2016

dễ mà

a, tách ra (đừng có ghi từ này vào nha)

(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2

Vì a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2

=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2

8 tháng 10 2016

b,

Ta có :a^4+b^4+c^4=2.(ab+bc+ca)^2

mà 2.(ab+bc+ca)^2=2.(ab+bc+ca)^2

=>a^4+b^4+c^4=2.(ab+bc+ca)^2

banh

25 tháng 10 2017

Bạn tham khảo ở đây nhé

Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath