K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

(-9^(10);0)___(2)_______=____(1)__(-4.23911584x10^(29);100)(1)

(1)từ âm đến dương chắc 1 điều có qua số 0

(2) từ -9^(10) đến 0 là số âm

(3)= có ít nhất 1 nghiệm âm

(1)+(2)=(3)

swo

14 tháng 5 2017

xét hàm số f(x)=x3-10x2+100 liên tục trên R

ta có: f(0) =100

f(-4)= (-4)3-10(-4)2+100= -124

=> f(0).f(-4) <0 => pt luôn có 1 nghiệm nằm trong khoảng (-4,0)

vậy pt có ít nhất 1 nghiệm âm

17 tháng 5 2016

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

17 tháng 5 2016

Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người

10 tháng 12 2019

\(f\left(0\right)=1,f\left(-3\right)=-128\Rightarrow f\left(0\right)f\left(-3\right)< 0\) do đó theo định lí Bolzano phương trình luôn có nghiệm thuộc khoảng (-3,0)

1 tháng 5 2018

Ta có:

Đặt phương trình là f(x): x5 + x4 +3x2-2x-1.

f(1) = 2

f(-2) = -1

f(1) × f(-2) = -2 < 0

=> có 1 nghiệm trong khoảng từ (1; -2)

=>Pt có nghiệm (dpcm)

1 tháng 5 2018

4x4+2x2-x-3=0

10 tháng 5 2018

hàm số 4x4 +2x2-x-3 =0 (*)

vì (*) là hàm đa thức => (*) liên tục trên R

=> (*) liên tục trên đoạn [-1;0] và [0;1]

xét [-1;0] có:

f(-1)= 4 ; f(0)= -3 => f(-1) . f(0) = -12 <0

=> có ít nhất một nghiệm trên khoảng (-1;0) (1)

xét [0;1] có :

f(0) = -3 ; f(1) = 2 => f(0). f(1) = -6 < 0

=> có ít nhất một nghiệm trên khoảng (0;1) (2)

từ (1) và (2) => có ít nhất 2 nghiệm phân biệt trên khoảng (-1;1 )

NV
16 tháng 5 2020

Xét hàm \(f\left(x\right)=\left(2m^2+3m+4\right)x^4+x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(0\right)=-1< 0\)

\(f\left(1\right)=2m^2+3m+4=2\left(m+\frac{3}{4}\right)^2+\frac{23}{8}>0\) ; \(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\)  ; \(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm trên khoảng \(\left(0;1\right)\) với mọi m hay pt đã cho luôn có nghiệm