Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
2945 đồng dư 2(mod 9)
=>2945^2 đồng dư 32(mod 9)
Hay 2945^5 đồng dư 5(mod 9)
=>2945^5 - 3 đồng dư 2(mod 9)
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
Nếu n là số lẻ thì
n2 chia 8 dư 1
4n chia 8 dư 4
5 chia 8 dư 5
=> (1 + 4 + 5) không chia hết cho 8
=>n2 + 4n + 5 không chia hết cho 8 với n là số lẻ
Ta có: 35=1(mod 17)
=>3535=135(mod 17)
=>3535=1 (mod 17)
Ta có: 52=1(mod 17)
=>5252 = 152(mod 17)
=>5252=1(mod 17)
=>3535+5252-2=1+1-2 (mod 17)
=>A=0 (mod 17)
=>A chia hết cho 17 (đpcm)
Đặt A = 2 + 22 + 23 + ... + 22004
2A = 22 + 23 + 24 + ... + 22005
2A - A = (22 + 23 + 24 + ... + 22005) - (2 + 22 + 23 + ... + 22004)
A = 22005 - 2
Ta có: \(2^6\equiv1\left(mod21\right)\)
=> \(2^{2004}\equiv1\left(mod21\right)\)
=> 22004 - 1 chia hết cho 21
=> 2.(22004 - 1) chia hết cho 42
=> 22005 - 2 chia hết cho 42
=> A chia hết cho 42 (đpcm)
Bài 1 Bài này sai đề bạn nhé!!!!
Bài 2:
a) 74n = (74)n =2401n
Mà 2401n luôn có tận cùng bằng 1
\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5
b)34n + 1 = (34)n . 3 = 81n . 3
Mà (......1)n luôn có tận cùng là 1
\(\Rightarrow\)(......1)n .3 tận cùng là 3
\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5
c)Câu này hình như sai đề bạn nhé!!!
d)92n + 1 = (92)n . 9 = 81n .9
Mà 81n luôn có tận cùng là 1
\(\Rightarrow\) 81n . 9 có tận cùng là 9
\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10
Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!
Ta có: 34 = 1 (mod 5)
=>34n = 1n (mod 5)
=>34n.3 = 1.3 (mod 5)
=>34n+1 = 3 (mod 5)
=>34n+1+2 = 3+2 (mod 5)
=>P = 0 (mod 5)
Vậy P chia hết cho 5(đpcm)
"=" là đồng dư nha
ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5
vậy p chia hết cho 5(đpcm)