K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

2.

Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí

+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3

=> (1) vô lí

Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm

1 tháng 7 2015

1, a và a+2 là số nguyên tố => a , a+2 đều là số lẻ => a+1 là số chẵn => a+1 chia hết cho 2 (1)
2. a và a+2 là số nguyên tố nên không chia hết cho 3
+Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 (loại)
+Nếu a chia 3 dư 2 thì a+2 chia 3 dư 1 (nhận) => a+1 chia hết cho 3 (2)

Từ (1) và (2) suy ra a+1 chia hết cho 6

14 tháng 5 2018

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

14 tháng 5 2018

Ta có x là một số nguyên tố lớn hơn 3 ( gt )

Nên x không thể chia hết cho 3 và x^2 chia 3 dư 1 

\(\Rightarrow x^2-1⋮3\)

x là nguyên tố lớn hơn 3 nên x là số lẻ suy ra x^2 chia 8 dư 1 

\(\Rightarrow x^2-1⋮8\)

\(\Rightarrow x^2-1⋮24\left(đpcm\right)\)

10 tháng 11 2020

Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên

\(\left(m-1\right)\left(m+1\right)⋮3\)(1)

m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)

Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8

Vậy (m-1)(m+1) chia hết cho 24

22 tháng 7 2015

Vì p là số nguyên tố lớn hơn 3 nên p Không chia hết cho 3 nên p có dạng 3k +1 hoặc 3 k+2 ( k N)
Nếu p =3k+1
nếu d chia 3 dư 1 thì p+2d  
(loại vì p+2d nguyên tố)
nếu d chia cho 3 dư 2 thì p+d chia hết cho 3(loại vì p+d nguyên tố)
Vậy p= 3k+1 thì d chia hết cho 3
Tương tự với p= 3k +2 thì d
vậy p>3 và p; p+d;p+2d là các số nguyên tố thì p chia hết cho 3(1)
p lẻ p+d nguyên tố thì p+d lẻ nên d chẵn do đó d chia hết cho 2(2)
từ (1) ; (2) kết hợp với (2,3) = 1 ta có d chia hết cho 6

3 tháng 6 2015

do a ;a+k ; a+2k là số nguyên tố >3

=> a;a+k;a+2k lẻ

=> 2a+k chẵn =>k⋮ 2

mặt khác a là số nguyên tố >3 

=> a có dạng 3p+1 và 3p+2(p∈ N*)

xét a=3p+1

ta lại có k có dạng 3b ;3b+1;3b+2(b∈ N*)

với k=3b+1 ta có 3p+1+2(3b+1)=3(p+1+3b) loại vì a+2k là hợp số 

với k=3b+2 => b+k= 3(p+b+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

mà (3;2)=1

=> k⋮6

13 tháng 2 2016

mai xinh gái xin chào.Jenny Vũ

 

15 tháng 3 2017

là cái j har bn