K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(n^3\cdot\left(n^2-7\right)^2-36n\)

\(=\left(n-3\right)\cdot\left(n-2\right)\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)\)

Đây là 7 số tự nhiên liên tiếp

Trong 7 số tự nhiên liên tiếp sẽ có một số chia hết cho 7

\(\Rightarrow Biểu\) thức trên chia hết cho 7 với mọi \(n\in Z\)

Hay \(n^3\cdot\left(n^2-7\right)^2-36n⋮7\left(\forall x\in Z\right)\)

17 tháng 3 2020

cảm ơn b nha :3

10 tháng 12 2018

Có A = [ n(n2 -7 )2 -36n ] 

         = n [ n2 (n2 -7)2 - 36] = n[ n(n2 -7) -6][n(n2-7) +6]

         = n( n3 -7n -6)(n3 -7n +6) = n(n3 -n -6n -6)(n3 -n -6n +6)

         = n[ n( n2-1 ) - 6(n+1)][ n( n2 -1)-6(n-1)] = n[ n(n-1)(n+1) -6(n+1)][ n(n-1)(n+1)-6(n-1)]

         = n [ (n+1)(n2 -n-6)][ (n-1)(n2 +n -6)] = n[ n(n-3)(n+1) +2(n-3)][n(n+3)(n-1) - 2(n+3)]

         = n(n+1)(n-3)(n+2)(n-1)(n+3)(n-2)

mà n; (n+1); (n-3); (n+2); (n-1); (n+3); (n-2) là 7 STN liên tiếp => A⋮ 7  ∀ n∈ Z

10 tháng 12 2016

Ta có: \(5040=16.9.5.7\)

\(A=\text{ }n^3\left(n^2-7\right)^2-36n=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

Chứng minh chia hết cho 24

Đây là 7 số nguyên liên tiếp nên sẽ có ít nhất 3 số chẵn liên tiếp mà trong 3 số chẵn liên tiếp sẽ có 2 số chia hết cho 2 và 1 số chia hết cho 4 nên A chia hết cho 16

Chứng minh chia hết cho 9

Cứ 3 số liên tiếp thì chia hết cho 3 mà trong này ta có 2 bộ số như vậy nên chia hết cho 9

Chứng minh chia hết cho 5

Trong 5 số liên tiếp có ít nhất 1 số chia hết cho 5 nên A chia hết cho 5

Chứng minh chia hết cho 7

Trong 7 số liên tiếp có ít nhất 1 số chia hết cho 7 nên A chia hết cho 7

Vì 16,9,5,7 là các số nguyên tố cũng nhau từng đôi 1 nên A chia hết cho 5040

7 tháng 8 2021

A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một  bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)

26 tháng 10 2022

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

NV
26 tháng 12 2018

\(A=n\left(n^2\left(n^2-7\right)^2-36\right)=n\left(\left(n^3-7n\right)^2-36\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow A\) là tích của 7 số nguyên liên tiếp \(\Rightarrow A\) chia hết cho \(3;5;7;8\Rightarrow A⋮840\)

17 tháng 11 2017

Có 5040=16.9.5.7

A= n3(n2-7)2-36n

= n.[ n2(n2-7)2-36]

= n.[(n3-7n)2-36]

= n.(n3-7n-6)(n3-7n+6)

Có :

\(\cdot\) n3-7n-6

= n3-9n+2n-6

= n(n2-9)+2(n-3)

= n(n+3)(n-3)+2(n-3)

= (n-3)(n+1)(n+2)

\(\cdot\) n3-7n+6

= n3-9n+2n+6

= n(n-3)(n+3)+2(n+3)

= (n+3)(n-1)(n-2)

\(\Rightarrow A=\left(n-3\right)\left(n-1\right)\left(n-2\right)n\left(n+1\right)\left(n+3\right)\left(n+2\right)\)

Đây là tích 7 số nguyên liên tiếp , trong 7 số nguyên liên tiếp đó có

\(-\) Tồn tại 1 bội số của 5 \(\Rightarrow A⋮5\)

\(-\) Tồn tại 1 bội số của 7 \(\Rightarrow A⋮7\)

\(-\) Tồn tại 2 bội số của 3 \(\Rightarrow A⋮9\)

\(-\) Tồn tại 3 bội số của 2 , trong đó có 1 bội số của 4 \(\Rightarrow A⋮16\)

\(\Rightarrow A⋮9.16.5.7\)

\(\Rightarrow A⋮5040\left(đpcm\right)\)

17 tháng 11 2017

với mọi n thuộc N

30 tháng 10 2022

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 105