\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\)

Đặt:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+....+a_{2018}}=k\)

\(\circledast\)\(\left(\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\right)^{2017}=k^{2017}\)

\(\circledast\) \(\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}....\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1}{a_{2018}}=k^{2017}\)

Ta có đpcm

2 tháng 8 2018

xem lại đề nha

3 tháng 8 2018

đề bị sai lỗi chính tả kìa

8 tháng 7 2018

Ta có ;

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{\left(a1\right)^{2017}}{\left(a2\right)^{2017}}\\ =\dfrac{a1\cdot a2\cdot a3\cdot...\cdot a2017}{a2\cdot a3\cdot a4\cdot...\cdot a2018}=\dfrac{a1}{a2018}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\left(2\right)\)

Từ (1) và (2) ⇒ Đpcm

25 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)

\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)

\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)

3 tháng 1 2017

Hoàng Lê Bảo Ngọc, Trương Hồng Hạnh, Trần Việt Linh, Nguyễn Huy Tú

3 tháng 1 2017

Giải:

Ta có: \(\frac{a_1}{a_{2018}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2017}}{a_{2018}}=-5^{2017}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\)

\(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}=\frac{a_1}{a_2}=-5\)

Vậy S = -5

Mn xem t lm đúng khống nhé! T không chắc lắm

15 tháng 1 2017

Ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow S=5\)

Vậy : \(S=5\)

8 tháng 7 2018

Có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.........=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+.........+a_{2017}}{a_2+a_3+........+a_{2018}}\)

Mà \(\frac{a_1}{a_2}=\frac{a_1+a_2+............+a_{2017}}{a_2+a_3+.............+a_{2018}}\)

\(\frac{a_2}{a_3}=\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\)

.........

\(\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\)

\(\Leftrightarrow\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\right)\)

Vậy ......

8 tháng 7 2018

Hình như bị sai đề rồi bạn Nguyễn Thị Ngọc Diệp

Chỗ sai:

\(\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\right)\)

Bạn sửa lại đề đi rồi mình làm lại cho