Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{2}{3}:\left(6x+7\right)=0.2:1\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{2}{3}:\left(6x+7\right)=\dfrac{1}{5}:\dfrac{7}{6}=\dfrac{6}{35}\)
\(\Leftrightarrow6x+7=\dfrac{35}{9}\)
=>6x=-28/9
hay x=-28/54=-14/27
b: \(\dfrac{a}{a+2b}=\dfrac{c}{c+2d}\)
\(\Leftrightarrow a\left(c+2d\right)=c\left(a+2b\right)\)
\(\Leftrightarrow ac+2ad=ac+2bc\)
=>2ad=2bc
=>ad=bc
=>a/b=c/d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(A=\dfrac{a^2\cdot d^2-4b^2\cdot c^2}{abcd}=\dfrac{b^2k^2\cdot d^2-4\cdot b^2\cdot d^2k^2}{bk\cdot b\cdot dk\cdot d}\)
\(=\dfrac{-3b^2k^2d^2}{b^2k^2d^2}=-3\)
Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được
\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)
\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)
Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)
\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)
từ \(a\left(y+z\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)
Kết hợi (1);(2)(3) => ĐPCM
tik mik nha !!!
a: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}>=2\cdot\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\)
\(\Leftrightarrow\left(a+b\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}\cdot2\cdot\sqrt{\dfrac{1}{ab}}=4\)
b: \(a+b+c>=3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>=3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)
Do đó: \(\left(a+b+c\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
1. Câu hỏi của Cuber Việt ( Câu b í -.- )
2. Quy đồng mẫu số:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)
\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)
Vì \(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.
So sánh \(ab+2018a\) và \(ab+2018b\):
. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.
. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)
\(\Rightarrow y.\left(x-3\right)=6\)
Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)
Tự lập bảng ...
Vậy ta có những cặp x,y thỏa mãn là:
\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)
Cần so sánh:
\(ab+2018a\) với \(ab+2018b\)
Cần so sánh \(2018a\) với \(2018b\)
Cần so sánh \(a\) với \(b\)
\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)
\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.
(1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2 + 2(1/ab + 1/bc + 1/ac) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2(bcac + abac + abbc)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2abc(a + b + c)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2 = 4
(vì abc(a + b + c) = a2 b2 c2)
<=> 1/a2 + 1/b2 + 1/c2 = 2