K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm) 

p là số nguyên tố >3=>p=3k+1;3k+2

xét p=3k+2=>10p+1=10(3k+2)+1

=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3

=>10p+1 là hợp số(trái giả thuyết)

=>p=3k+1

=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3             (1)

p>3=>p=2q+1

=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2               (2)

từ (1);(2)=>5p+1 chia hết cho 2;3

vì (2;3)=1=>5p+1 chia hết cho 6

=>đpcm

24 tháng 7 2016

 1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích tớ nha

24 tháng 7 2016

1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích nha

4 tháng 11 2015

54525 đó Châu Anh Đăng

3 tháng 8 2015

Xét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)

=> Có 1 số chia hết cho 3; một số chia hết cho 2

Vì p và 10p+1 là 2 sồ nguyên tố (p>3)

=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2

=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2

=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2

Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2

Vậy 5p+1 chia hết cho 6 (đpcm)

nhấn đúng nha

22 tháng 3 2016

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2 tháng 12 2015

ét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)

=> Có 1 số chia hết cho 3; một số chia hết cho 2

Vì p và 10p+1 là 2 sồ nguyên tố (p>3)

=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2

=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2

=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2

Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2

Vậy 5p+1 chia hết cho 6 (đpcm)

nhấn đúng nha

22 tháng 3 2016

p nguyên tố > 3

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 

10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) mà 2 và 3 đều là những số nguyên tố nên từ (*)

=> 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

1 tháng 11 2016

gt là gì đấy bạn

6 tháng 8 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6

Chúc bn hok tốt

6 tháng 8 2016

+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2

Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại

=> p = 3k + 1

=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)

Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)

Bài này là chứng minh chứ ko fai tìm nha bn

27 tháng 1 2018

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6.

3 tháng 11 2015

P NGUYÊN TỐ LỚN HƠN 3 NÊN P LẺ SUY RA 5P LẺ NÊN 5P+1 CHIA HẾT CHO 2.P NGUYÊN TỐ LỚN HƠN 3 P CÓ DẠNG 3K+1 HOẶC 3K+2.

P= 3K+2 SUY RA 10P+1 CHIA HẾT CHO 3(LOẠI) VẬY P =3K+1 SUY RA 5P+1 CHIA HẾT CHO 3 MÀ (3,2)=1 SUY RA 5P+1 CHIA HẾT CHO 6

tick đúng nhé bạn