K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

 

+A =5n + 9915  chia hết cho 5

+ A = 5n +9915 = 9916 +(  5n -1 ) =  9916 +( ....25 - 1 ) = 9916 + ....24 chia hết cho 4

mà (4;5) =1

=> A chia hết cho  4.5 =20

21 tháng 10 2015

1)

Ta có: a+a+2=2a+2=2.(a+1)

Vì a là số nguyên tố lớn hơn 3

=>a là số lẻ

=>a+1 là số chẵn

=>a+1 chia hết cho 2

=>2.(a+1) chia hết cho 4

=>a+a+2 chia hết cho 4(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a có 2 dạng 3k+1 và 3k+2

*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3

=>a+a+2 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

a+a+2 chia hết cho 4 và 3

mà (4,3)=1

=>a+a+2 chia hết cho 4.3

=>a+a+2 chia hết cho 12

Vậy tổng của n và n+2 chia hết cho 12

2 tháng 3 2017

ko bt ban oi

1) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước :16;1156;111556;11115556;..... Hãy chứng minh mọi số hạng của dãy đều là số chính phương.2) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì được số dư là 23 còn khi chia nó cho 1993 thì được số dư là 323) Tìm số nguyên x sao cho: ( x+2).(- x +3)lớn hơn...
Đọc tiếp

1) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước :

16;1156;111556;11115556;..... Hãy chứng minh mọi số hạng của dãy đều là số chính phương.

2) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì được số dư là 23 còn khi chia nó cho 1993 thì được số dư là 32

3) Tìm số nguyên x sao cho: ( x+2).(- x +3)lớn hơn hoặc bằng 0

4) Tìm số nguyên n để phần số n-1/2n+5 là số nguyên dương.

5) CMR với mọi số tự nhiên n thì:

4n - 1 chia hết cho 3

6) Tìm 2 số nguyên tố a và b để ab+1 cũng là số nguyên tố

7) Cho 50 số tự nhiên khác 0 mỗi số đều nhỏ hơn hoặc bằng 50, tổng của 50 số đó bằng 100. Chứng minh rằng có thể chọn được một vài số mà tổng của chúng bằng 50.

8) Cho 2 số tự nhiên a và b. Chứng minh rằng nếu a và b là hai số chia hết cho 3 thì:

a2+b2- 19ab chia hết cho 9 và ngược lại nếu a^2+b^2-19ab chia hết cho 9 thì a và b đều chia hết cho 3.

    GIẢI NHANH HỘ MÌNH!!!!!!

 

2
24 tháng 1 2017

cung choi bang bang ak

24 tháng 1 2017

MAU LÊN

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Sửa đề: CM: $(2^n+1)(2^n+2)\vdots 3$ với mọi $n$ là số tự nhiên lớn hơn $0$.

Nếu $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.

$2^n+2=2^{2k}+2=4^k+2\equiv 1^k+2\equiv 1+2\equiv 3\equiv 0\pmod 3$

$\Rightarrow 2^n+2\vdots 3$
Nếu $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

$2^n+1=2^{2k+1}+1=4^k.2+1\equiv 1^k.2+1\equiv 3\equiv 0\pmod 3$

$\Rightarrow 2^n+1\vdots 3$

Vậy 1 trong 2 thừa số $2^n+1, 2^n+2$ chia hết cho 3 với mọi $n$ tự nhiên

$\Rightarrow (2^n+1)(2^n+2)\vdots 3$