K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

ko bt ban oi

1 tháng 1 2016

n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)

+) n = 3k + 1 => n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1

+) n = 3k + 2 => n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1

Vậy trong cả 2 trường hợp, n2 chia 3 dư 1

1 tháng 1 2016

Vì n2 là số chính phương nên n2 chia hết cho 3 hoặc chia 3 dư 1

Mà n không chia hết cho 3 => n2 không chia hết cho 3

Từ 2 điều trên => n2 chia 3 dư 1

Vậy...

24 tháng 11 2016

Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )

a) n+3 : n-2

=> n+3 : n+3-5 

=> n+3 : 5 ( Vì n+3 : n+3 )

=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!

b) 2n+9 : n-3

=> n + n + 11 - 3 : n-3 

=> n + 11 : n-3

=> n + 14 - 3 : n-3

=> 14 : n - 3 ( Vì n - 3 : n-3 )

=> n-3 là Ư(14) => Tự làm tiếp

c) + d) thì bạn tự làm nhé!

-> Chúc bạn học giỏi :))

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

Chứng minh rằng n(n+1)(2n+1) chia hết cho 6?

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

20 tháng 3 2018

xem trên mạng