Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)
a) a2 + b2 + c2 = ab + bc + ac
\(\Rightarrow\) a2 + b2 + c2 - ab - bc - ac = 0
\(\Rightarrow\) 2(a2 + b2 + c2 - ab - bc - ac) = 0
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
b) (a + b + c)2 = 3(a2 + b2 + c2)
a2 + b2 + c2 + 2ab + 2bc + 2ac = 3a2 + 3b2 + 3c2
\(\Rightarrow\) 2ab + 2ac + 2bc = 2a2 + 2b2 + 2c2
\(\Rightarrow\) 0 = a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac
Hay: a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\)(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
c) (a + b + c)2 = 3(ab + bc + ac)
a2 + b2 + c2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac
\(\Rightarrow\) a2 + b2 + c2 = ab + ac + bc2
\(\Rightarrow\) 2(a2 + b2 + c2) = 2(ab + ac + bc)
\(\Rightarrow\) 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
CHÚC BN HOK TỐT(nhớ tik mik nha)
a)Cmr : Nếu : a2 + b2 + c2 = ab + bc + ac thì a = b =c
Bài làm
2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) =0
= > ( a - b)2 + ( a - c)2 + ( b -c)2 = 0
Vậy :
* ( a - b)2 = 0
* ( a - c)2 =0
* (b -c)2 =0
Suy ra :
* a =b
* a =c
* b = c
Suy ra : a = b =c ( đpcm)
nhân cả hai vế a2+b2+c2=ab+ac+bc cho 2 ta được:
2.(a2+b2+c2)=2.(ab+ac+bc)
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>2a2+2b2+2c2-2ab-2ac-2bc=0
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0và a-c=0 và b-c=0
<=>a=b và a=c và b=c
=>a=b=c
\(a^2+b^2+c^2=ab+bc+ca\)
\(=>a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)
\(< =>a-b=0,b-c=0,c-a=0\)
\(=>a=b,b=c,c=a\)
Vậy \(a=b=c\)
Mình cảm ơn bạn