Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng engel:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cách khác :
Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(\dfrac{a^2}{a+b}+\dfrac{a+b}{4}\ge2\sqrt{\dfrac{a^2\left(a+b\right)}{4\left(a+b\right)}}=a\)
Tương tự: \(\dfrac{b^2}{b+c}+\dfrac{b+c}{4}\ge b;\dfrac{c^2}{c+a}+\dfrac{c+a}{4}\ge c\)
Cộng theo vế ta được:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)(đpcm)
Đáp án c) nhé em.
x-2<=0 => x<=2
x2(x-2)<=0 => x=0 hoặc x-2<=0 => x<=2
Em mới học lớp 6 thôi ạ! Xin lỗi nhiều vì không giúp được!
Giả sử không có BĐT thức nào có nghiệm. Khi đó:
\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)
\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)
\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)
Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)
\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí
Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm
Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)
Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng
a (b2+d2)<b(ab+cd) (b,d>0)
<=> ab2+ad2<ab2+bcd
<=> ad2-bcd<0
<=> d(ad-bc)<0 (*)
mà d>0; ad<bc(cmt)--> ad-bc<0
nên (*) đúng.
cm tiếp vế kia cũng như thế rồi kết luận
Ta co: a3b2=(a2b2)a , a2b3=(a2b2)b => a3b2>a2b3( vi a>b) (1)
b3c2=(b2c2)b , b2c3=(b2c2)c => b3c2>b2c3( vi b>c) (2)
c3a2=(a2c2)c , a3c2=(a2c2)a => c3a2<a3c2 ( vi c<a) (3)
Vi b+c>a ( bdt trong tam giac)
=> dpcm
Bai nay phai xet trong tam giac thi moi dung
Biến đổi tương đương:
\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)
\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)