Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23
30a+2b chia hết cho 13
=> (30a+2b)-(7a-21b) =30a+2b-7a+21b=23a+23b=23(a+b) chia hết cho 3
Vì 30a+2b chia hết cho 23 nên 7a-21b chia hết cho 23
\(\left(30a+2b\right)\) chia hết cho \(23\)
nên \(\left(30a+2b-23a-23b\right)\) cũng chia hết cho \(23\)
hay \(\left(7a-21b\right)\) chia hết cho \(23\)
Nếu 3a+4b chia hết cho 23 thì 8.(3a+4b)=24a+32b (1) chia hết cho 23
Ta xét biểu thức 3.(8a+3b)=24a+9b (2)
Lấy (1) trừ đi (2) được (24a+32b)-(24a+9b)=24a+32b-24a-9b=23b chia hết cho 23
Vậy 8.(3a+4b)-3.(8a+3b) chia hết cho 23
Mà 8.(3a+4b) chia hết cho 23
=> 3.(8a+3b) chia hết cho 23, mà (8;23)=1
=>8a+3b chia hết cho 23
Ngược lại thì bạn xét biểu thức 3.(8a+3b)-8.(3a+4b), làm tương tự như trên
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Xet bieu thuc: 6(7a+3b)+(4a+5b)
=42a+18b+4a+5b
=46a+23b
=23(2a+b)
Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23
Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23
nếu 4a + 5b chia hết cho 23 (1)
(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)
(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23
\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23
(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))
Vậy 4a + 5b chia hết cho 23
Giải:
Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)
\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)
\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)
Vậy \(4a+5b⋮23\) (Đpcm)
abc=100a+10b+c
ta có 3.(100a+10b+c)-10(30a+3b-2c)=300a+30b+3c-300a-30b+20c=23c chia hết cho 23
=>3.(100a+10b+c)-10.(30a+3b-2c) chia hết cho 23 vì abc chia hết cho 23 nên 3(100a+10b+c) chia hết cho 23 =>10(30a+3b-2c) chia hết cho 23=> 30a+3b-2c chia hết cho 23=> đpcm
abc=100a+10b+c
ta có 3.(100a+10b+c)-10(30a+3b-2c)=300a+30b+3c-300a-30b+20c=23c chia hết cho 23
=>3.(100a+10b+c)-10.(30a+3b-2c) chia hết cho 23 vì abc chia hết cho 23 nên 3(100a+10b+c) chia hết cho 23 =>10(30a+3b-2c) chia hết cho 23=> 30a+3b-2c chia hết cho 23=> đpcm