\(\ge\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

nếu a+b=0

*)xét a=b=0

=>a^2+b^2=0 (1)

*)a dương âm hoặc b âm a dương và \(\ne\)0

vì tất cả các số thuộc Z có lũy thừa 2 đều là số dương

=>a^2+b^2 >0 (2)

từ (1) và (2) ta có a^2+b^2\(\ge\)0

NV
23 tháng 4 2019

Biến đổi tương đương:

\(4\left(a^3+b^3\right)\ge a^3+3ab\left(a+b\right)+b^3\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) luôn đúng do \(a;b\ge0\)

Dấu "=" xảy ra khi \(a=b\)

NV
30 tháng 9 2019

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

"=" \(\Leftrightarrow a=b=c\ne0\)

4 tháng 5 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)

\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)

Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)

\(\Rightarrow a+b+c\ge3abc\)

17 tháng 8 2016

Áp dụng bđt Cauchy, ta có : \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)

tương tự : \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)

\(\Rightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(a+b+c\right)\)

 \(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)(đpcm)

17 tháng 8 2016

cái này lớp 10 mà

 

27 tháng 8 2017

<=>\(a^2\left(a-b\right)-b^2\left(a-b\right)\)>=0

<=>\(\left(a-b\right)\left(a^2-b^2\right)\)>=0

<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0

Vì \(\left(a-b\right)^2\)>=0

<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0 (đpcm)

27 tháng 8 2017

Vì  \(a,b\ge0\)nên 

\(a+b\ge0\)(1)

\(\left(a-b\right)^2\ge0\)(2)

Nhân vế với vế của 1 và 2 , ta được : 

\(\left(a+b\right)\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab-ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab.\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

7 tháng 4 2017

\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)

\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)

\(-ab+ac\le0\)

\(-ad-cd\le0\)

\(-bc+bd\le0\)

\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)

\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

Bằng nhau khi và chỉ khi a = b = c = d

Dấu lớn xảy ra khi a> b >c > d

***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài limdim***********

6 tháng 8 2019

có sự nhầm lẫn :'>

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)