Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu a+b=0
*)xét a=b=0
=>a^2+b^2=0 (1)
*)a dương âm hoặc b âm a dương và \(\ne\)0
vì tất cả các số thuộc Z có lũy thừa 2 đều là số dương
=>a^2+b^2 >0 (2)
từ (1) và (2) ta có a^2+b^2\(\ge\)0
Biến đổi tương đương:
\(4\left(a^3+b^3\right)\ge a^3+3ab\left(a+b\right)+b^3\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) luôn đúng do \(a;b\ge0\)
Dấu "=" xảy ra khi \(a=b\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
"=" \(\Leftrightarrow a=b=c\ne0\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)
Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge3abc\)
Áp dụng bđt Cauchy, ta có : \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)
tương tự : \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)
\(\Rightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)(đpcm)
<=>\(a^2\left(a-b\right)-b^2\left(a-b\right)\)>=0
<=>\(\left(a-b\right)\left(a^2-b^2\right)\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0
Vì \(\left(a-b\right)^2\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0 (đpcm)
Vì \(a,b\ge0\)nên
+ \(a+b\ge0\)(1)
+ \(\left(a-b\right)^2\ge0\)(2)
Nhân vế với vế của 1 và 2 , ta được :
\(\left(a+b\right)\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab.\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)
\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)
\(-ab+ac\le0\)
\(-ad-cd\le0\)
\(-bc+bd\le0\)
\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)
\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
Bằng nhau khi và chỉ khi a = b = c = d
Dấu lớn xảy ra khi a> b >c > d
***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài ***********