Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)
Vì \(\frac{a+b+c+d}{ab}+\frac{a+b+c+d}{ac}+\frac{a+b+c+d}{ad}\)
\(=\frac{a+b}{ab}+\frac{c+d}{ab}+\frac{a+b}{ac}+\frac{a+b}{ad}+\frac{c+d}{ac}+\frac{c+d}{ad}\)
\(=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(d+c\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\)
Áp dụng bất đẳng thức:
\(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)
\(\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\ge36\left(đpcm\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Ta có :
\(3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{2}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Rightarrow\left(a+b+c+d\right)^2=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\)
\(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\left(đpcm\right)\)
\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\)\(+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) ( đúng )
=> Đpcm
Ai biết cách làm giải hộ đi///