K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

10 tháng 7 2021

Đặt A=n4−4n3−4n2+16n

=n(n3−4n2−4n+16)

=n(n−4)(n2−4)

=(n−4)(n−2)n(n+2)=(n−4)(n−2)n(n+2) (1)(1)

Thế n=2kn=2k (k∈Z+)(k∈Z+) vào (1)(1) được:

    n4−4n3−4n2+16nn4−4n3−4n2+16n

=(2k−4)(2k−2)2k(2k+2)=(2k−4)(2k−2)2k(2k+2)

=16.(k−2)(k−1)k(k+1)=16.(k−2)(k−1)k(k+1) (2)(2)

Do (k−2)(k−1)k(k+1)(k−2)(k−1)k(k+1) là 44 số nguyên liên tiếp nên nên tích này luôn chia hết cho 33 và 88, mà ƯC(8,3)=1ƯC(8,3)=1

=>(k−2)(k−1)k(k+1)=>(k−2)(k−1)k(k+1) ⋮⋮ 2424 (3)(3)

Từ (2)(2) và (3)=>(n4−4n3−4n2+16n)(3)=>(n4−4n3−4n2+16n) ⋮⋮ 384384 (đpcm)

5 tháng 6 2024

Ta phân tích biểu thức đã cho ra nhân tử :

A = n4−4n3−4n2+16nA

   =[n4−4n3]−[4n2−16n]

   =n3(n−4)−4n(n−4)

   =n(n−4)[n2−4]

   =n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : 

A=(2k+2)(2k)(2k+4)(2k−2)

  =16k(k−1)(k+1)(k+2)

  =16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

5 tháng 6 2024

Ta phân tích biểu thức đã cho ra nhân tử :

A = n4−4n3−4n2+16nA

   =[n4−4n3]−[4n2−16n]

   =n3(n−4)−4n(n−4)

   =n(n−4)[n2−4]

   =n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : 

A=(2k+2)(2k)(2k+4)(2k−2)

  =16k(k−1)(k+1)(k+2)

  =16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2) là tích của bốn số nguyên dương liên tiếp, tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

14 tháng 8 2021

1.

\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)

Mặt khác:

\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)

\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)

14 tháng 8 2021

2.

Đề đúng chưa.

Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.

9 tháng 10 2019

Em tham khảo: Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)