Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4n+3\right)^2-25\)
\(=\left(4n+3\right)^2-5^2\)
\(=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)\)
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
(4n + 3)2 - 25
= (4n + 3 - 5)(4n + 3 + 5)
= (4n - 2)(4n + 8)
= 8(2n - 1)(n + 2)
Vì 8 \(⋮\) 8 nên 8(2n - 1)(n + 2) \(⋮\) 8 (đpcm)
Vậy 8(2n - 1)(n + 2) \(⋮\) 8
Chúc bn học tốt
Sửa lại: Vậy (4n + 3)2 - 25 \(⋮\) 8 với mọi số nguyên n
Kết luận nhầm xíu
\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)
Vậy...............
Sai đề rồi :))
\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)
Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
\(\left(2n+5\right)^2-25=\left(2n+5\right)^2-5^2=\left(2n+5-5\right)\left(2n+5+5\right)=2n\left(2n+10\right)=4n^2+20n\)
Vì: \(\left\{{}\begin{matrix}4n^2⋮4\\20n⋮4\end{matrix}\right.\)\(\Rightarrow4n^2+20n⋮4\left(đpcm\right)\)
Link :Câu hỏi của Lê Thị Yến Ninh - Toán lớp 8 - Học toán với OnlineMath
\(\left(4n+3\right)^2-25=16n^2+24n+9-25=16n^2+24n-16=8\left(2n^2+3n-2\right);n\in Z\Rightarrow2n^2+3n-2\in Z\Rightarrow E⋮8\left(đpcm\right)\)