Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
a) Ta có :
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(9.3^n+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=3^n.\left(9+1\right)-2^n\left(4+1\right)\)
\(=10.3^n-2^n.5\)
\(=10.3^n-2^{n-1}.2.5\)
\(=10.3^n-2^{n-1}.10\)
=\(=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10 với mọi n thuộc N*
BÀI NÀY CÔ LÀM CHO TỚ RỒI , ĐÚNG 100 %
A= 3n+3+3n+1+2n+2+2n+1
A= (3n+3+3n+1) + (2n+2+2n+1)
A= 3n(33+3) + 2n(22+2)
A= 3n.(27+3) + 2n(4+2)
A= 3n.30 + 2n.6
A=3n.5.6 + 2n.6
A= (3n.5+2n).6\(⋮\)6 (đpcm)
Tự kết luận nha :))
\(5^{n+2}+3.5^{n+1}+7.5^n\)
\(=5^n.5^2+3.5^n.5+7.5^n\)
\(=5^n\left(5^2+3.5+7\right)\)
\(=5^n\left(25+15+7\right)\)
\(=5^n.47⋮47\)
Vậy:................
Với mọi số tự nhiên n ta có:
\(3^{n+1}+3^{n+2}+3^{n+3}=3^{n+1}\left(1+3+3^2\right)=3^{n+1}.13⋮13\)
Vậy \(3^{n+1}+3^{n+2}+3^{n+3}⋮13\)
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Ta có: 25≡4 (mod 7) và 18≡4 (mod 7)
\(\Rightarrow25^n\text{≡}4^n\left(mod7\right)\)và \(18^n\text{≡}4\left(mod7\right)\)
\(\Rightarrow25^n-18^n⋮7\)(1)
Chứng minh tương tự, ta được \(5^n-12^n⋮7\)(2)
Từ (1) và (2) suy ra \(25^n+5^n-18^n-12^n⋮7\)
Tương tự như trên ta cũng chứng minh được \(25^n+5^n-18^n-12^n⋮13\)
Mà (7;13) = 1 nên \(25^n+5^n-18^n-12^n⋮91\)
Vậy A chia hết cho 91 với mọi n thuộc N (đpcm)