Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
Ta xét:
\(n^{n-1}-1=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^3+n^2+n+1\right)\)
\(=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^2+n+1+\left(n-1\right)-\left(n-1\right)\right)\)
\(=\left(n-1\right)\left[\left(n^{n-2}-1\right)+\left(n^{n-3}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(n-1\right)\right]\)\(⋮\left(n-1\right)^2\)
=> \(n^n-n^2+n-1=\left(n^n-n\right)-\left(n^2-2n+1\right)=n\left(n^{n-1}-1\right)-\left(n-1\right)^2\)\(⋮\left(n-1\right)^2\)
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)