Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(777^{777}=\left(777^2\right)^{388}.777=\left(\overline{.....9}\right)^{388}.777=\left(\overline{.......1}\right).777=\overline{.......7}\)
\(3^{999}=\left(3^2\right)^{499}.3=9^{499}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow777^{777}-3^{999}=\overline{.....7}-\overline{......7}=\overline{........0}\) chia hết cho 10
\(\Rightarrow777^{777}-3^{999}=10k\left(k\in Z\right)\)
\(\Rightarrow\left(777^{777}-3^{999}\right)\cdot0.8=10k\cdot0.8=8k\) là số nguyên
\(\Rightarrow\left(777^{777}-3^{999}\right)\cdot0.8\) là số nguyên (đpcm)
đề bài ( 777^777- 3^999).0.8
ta có ( 777^777-3^999).0=0
vậy 0.8=0
suy ra 0 thuộc số nguyên
thông cảm nha ................mình giải hơi khì cục.
\(777^{777}=\left(777^4\right)^{194}.777^1\) có tận cùng bằng 7
\(3^{999}=\left(3^4\right)^{249}.3^3\) có tận cùng bằng 7
\(\Rightarrow777^{777}-3^{999}⋮10\\ \Rightarrow\left(777^{777}-3^{999}\right).201,7\in Z\)
\(m-1⋮2m+1\)
\(\Rightarrow2m-2⋮2m+1\)
\(\Rightarrow2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
tu lam
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
a,\(5^{70}+7^{50}=25^{35}+49^{50}\)
N/x: 25 và 49 chia 12 đều dư 1 -> tổng chia 12 dư 2
b.\(776^{776}+777^{777}+778^{778}\equiv\left(-1\right)^{776}+0+1^{776}\equiv2\)(mod 3)
-> chia 3 dư 2
\(776^{776}+777^{777}+778^{778}\equiv1+2^{777}+\left(-2\right)^{778}\equiv1+4^{388}\cdot2+4^{389}\equiv1+2\cdot\left(-1\right)^{388}+\left(-1\right)^{389}\equiv1+2-1\equiv2\)
->chia 5 dư 2
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
777777=777776+1=777776.777=7774.194.777=...7
3999=3996+3=34.249.33=(...1).37=...7
nên 777777- 3999 =(...7) - (...7)= ...0
nên (777777- 3999). 0,8 là số nguyên