K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

\(f\left(x,y\right)=\left(x^2+4y^2-4xy\right)+\left(2x-4y\right)+1+\left(y^2-2y+1\right)+1\)

\(f\left(x,y\right)=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-1\right)^2+1\)

\(f\left(x,y\right)=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\)

\(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)=> f(x;y) >=1 >0 => dpcm

1 tháng 3 2018

\(f\left(x,y\right)=x^2+4y^2+1-4xy+2x-4y+y^2-2y+1+1\)

\(=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\ge1>0\)

\(\Rightarrowđpcm\)

Ta có:\(x^2-4xy+6y^2+2x+4\)

\(=\left(x-2y\right)^2+\left(x+x+\frac{8}{x^2}\right)+\left(2y^2+\frac{2}{y^2}\right)\)

\(\ge0+6+4=10\)

\(\Rightarrow x^2-4xy+6y^2+2x\ge10-4=6\)

Dấu bằng xảy ra khi x=2 và y=1.

8 tháng 10 2018

mk làm 1 câu các câu còn lại tương tự nha :

a) ta có : \(pt\Leftrightarrow x^2-6x+9=-y^2-10y+33\)

\(\Leftrightarrow\left(x-3\right)^2=-y^2-10y+33\ge0\)

\(\Leftrightarrow-5-\sqrt{58}\le y\le-5+\sqrt{58}\) \(\Rightarrow x\in\left\{-12;-11;-10;...;1;2\right\}\) có y thế vào tìm x

8 tháng 10 2018

giups mik giải chi tiết đi mik bận lắm

8 tháng 8 2016

\(A=\left(\sqrt{6\left(x^2-2xy^2+y^3\right)}+\sqrt{6.4x^2y}\right).\frac{1}{\sqrt{6y}}\)

\(=\left(\sqrt{6\left(x^2-xy^2+y^3\right)}+2x\sqrt{6y}\right).\frac{1}{\sqrt{6y}}\)

\(=\left[\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}+2x\sqrt{y}\right)\right].\frac{1}{\sqrt{6y}}=\sqrt{6}\left(\sqrt{x^2-xy^2+y^3}-2x\sqrt{y}\right).\frac{1}{\sqrt{6}\sqrt{y}}\)

\(=\frac{x^2-xy^2+y^3}{\sqrt{y}}-\frac{2x\sqrt{y}}{\sqrt{y}}=\frac{x^2-xy^2+y^3}{\sqrt{y}}-2x\)

mik chỉ lm đến đây đc thui 

8 tháng 8 2016

\(B=\frac{7y\left(y-x\right)\sqrt{7xy}}{2\sqrt{7xy}}=7y^2-7x\)

26 tháng 8 2016

Viết dưới dạng pt ẩn x:

\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)

Vậy Max y = 2, khi đó x = -1.

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2