K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

15 phút nữa đưa ra lời giải rồi đợi mọi người bấm à

28 tháng 5 2015

\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)

NV
26 tháng 2 2019

\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)

\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)

\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)

\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)

26 tháng 2 2019

\(\left(x+y\right)^6+\left(x-y\right)^6\)

\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)

\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)

\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)

\(=\left(2x^2+2y^2\right)\left(...\right)\)

\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

25 tháng 10 2017

Nguyễn Huy Tú giúp vs

25 tháng 10 2017

khai triển hằng đẳng thức ra rồi tính đa thức

20 tháng 4 2017

Bài giải:

[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2

= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]

= 3(x – y)2 + 2(x – y) – 5

17 tháng 10 2017

Bài 65: (SGK/29):

Cách 1:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2

= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2

= 3.(x-y)2 + 2.(x-y) - 5

Cách theo SGK:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

Đặt (x-y) = z => (y-x) = z

=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2

Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2

= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)

= 3z2 + 2z - 5

Cách 2:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2

= 3(x-y)2 + 2(x-y) - 5

31 tháng 8 2017

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)

b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)

c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)

d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)

e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)

f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)

i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

30 tháng 8 2017

A),(-2)5:(-2)3=(-2)2=4

B) (-y)7 :(-y)3=y4

10 tháng 12 2020

Gọi H(x) là thương trong phép chia G(x) cho P(x)

Ta có : G(x) bậc 6, P(x) bậc 2 => H(x) bậc 4

=> H(x) có dạng x4 + mx3 + nx2 + px + 2 ( hệ số mình chọn là 2 chắc bạn biết )

Khi đó G(x) chia hết cho P(x) <=> G(x) = H(x).P(x)

<=> x6 + ax2 + bx + 2 = ( x2 - x + 1 )( x4 + mx3 + nx2 + px + 2 )

<=> x6 + ax2 + bx + 2 = x6 + mx5 + nx4 + px3 + 2x2 - x5 - mx4 - nx3 - px2 - 2x + x4 + mx3 + nx2 + px + 2

<=> x6 + ax2 + bx + 2 = x6 + ( m - 1 )x5 + ( n - m + 1 )x4 + ( p - n + m )x3 + ( 2 - p + n )x2 + ( -2 + p )x + 2

Đồng nhất hệ số ta có :

\(\hept{\begin{cases}m-1=0\\n-m+1=0\\p-n+m=0\end{cases}}\)\(\hept{\begin{cases}2-p+n=a\\-2+p=b\end{cases}}\)

=> \(\hept{\begin{cases}m=1\\n=0\\p=-1\end{cases}}\)\(\hept{\begin{cases}a=3\\b=-3\end{cases}}\)

Vậy a = 3 ; b = -3

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0