Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3
P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014
P(x) = x4 + 4x2 + 2014
Sắp xếp : P(x) = x4 + 4x2 + 2014
+) Ta có: x4 \(\ge\)0; 4x2 \(\ge\)0 ; 2014 > 0
=> x4 + 4x2 + 2014 > 0
=> P(x) vô nghiệm
\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)
\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)
\(=x^4+4x^2+2014\)
Sắp xếp P(x) = x4 + 4x2 + 2014
Ta có: \(x^4\ge0\forall x\)
\(x^4+4x^2\ge0\forall x\)
2014 > 0
=> P(x) vô nghiệm
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
a) Ta có: h(x) = 5x-7-(3x+1) = (5x-3x)-(7+1) = 2x-8
Vì 2x-8 = 0 nên x=4
Vậy nghiệm của đa thức h(x) là 4
b) Vì 2x-8 = 0 tại x = 4 nên 5x-7 = 3x+1 tại x = 4
Vậy f(x)=g(x) tại x =4
f (x) = x2 - x - x + 2
= x2 - x - x + 1 + 1
= x.(x - 1) - (x - 1) + 1
= (x - 1).(x - 1) + 1
= (x - 1)2 + 1
Ta có: (x - 1)2 \(\ge\) 0 với mọi x
=> (x - 1)2 + 1 > 0 với mọi x
Vậy đa thức vô nghiệm.
f(x)=x2 - x - x + 2=x2 - x - x + 1 + 1
=x(x-1)-(x-1)+1=(x-1)(x-1)+1
=(x-1)2+1.
Do: (x-1)2\(\ge\)0 (\(\forall\)x)
\(\Rightarrow\)(x-1)2+1\(\ge\)1>0 (\(\forall\)x)
Vậy f(x) vô nghiệm
C1:
\(f\left(x\right)=x^2+5x+7=x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-7\\ \Leftrightarrow f\left(x\right)=\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\)
ta thấy : \(\left(x+\dfrac{5}{2}\right)^2\ge0\)
và: \(-\dfrac{3}{4}< 0\)
mà \(\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\left(vô\:lí\right)\)
vậy đa thức đã cho vô nghiệm
C2:
ta thấy:\(\Delta=b^2-4ac=5^2-4.1.7=25-28=-3< 0\)
do đó đa thức đã cho vô nghiệm