Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+5.x=0
x.x+5.x=0
x.(x+5)=0
*x=0
*x+5=0
x=0-5
x=-5
Vậy x=0 hoặc x=-5
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
Gọi \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2017}< 1\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(=2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2016^2}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=1-\frac{1}{2^{2017}}< 1\) (đpcm)
Đặt A=1/2+(1/2)^2+...+(1/2)^2017
=>1/2 A=(1/2)^2+(1/2)^3+...+(1/2)^2017+(1/2)2018 (Nhân cả 2 vế cho 1/2)
=>1/2 A - A=(1/2)^2018-1/2
=>-1/2 A =(1/2)^2018-1/2
=>A=1-(1/2)^2017 <1 (Vì (1/2)^2017>0)
Đug ko biết
ta co
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}>\frac{1}{2.2}+\frac{1}{3.3}+....+\frac{1}{10.10}\)
ma ve trai =\(1-\frac{1}{10}\)
nen ve phai <1
D=1/1.2+1/2.3+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=1+0+0+0+...+0-1/10=1-1/10=9/10
ta có ; 1/22 +1/32+...+1/20172<1/1.2+1/2.3+1/3.4+.....+1/2016.2017=1-1/2+1/2-1/3+...+1/2016-1/2017=1+0+0+0+...+0-1/2017
=1-1/2017<1
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow D< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(\Leftrightarrow D< 1-\frac{1}{n}\)
\(\Leftrightarrow D< 1\left(đpcm\right)\)
Với k là số tự nhiên ta có
k²>k²-k=k(k-1)
=>1/k²<1/[k(k-1)]=[(k-(k-1)]/[k(k-1)]=1/(k-1)-1/k.
Áp dụng BĐT trên ta có
D<1-1/2+1/2-1/3+...+1/(n-1)-1/n
=1-1/n
<1(dpcm)