\(\left(n\in N\right)\)

ai làm d...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

dễ như ăn cháo

21 tháng 8 2016

gọi d thuộc ưc nguyên tố của ( 2n+!; 2n^2 -1); ta có

a; \(\frac{2n+1}{2n^2-1}=\frac{2\left(n^2+1\right)}{2n-1}=\frac{2n^2+2}{2n-1}\)cchia hết cho d

=> 2n^2+2-2n^2-chia hết choi d

=> 1 chia hết cho d=> d=1

vậy 2n+1/2n^2-1 nguyên tố cùng nhau

17 tháng 4 2017

\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)

gọi d là ước lớn nhất của A và B

ta có

\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)

Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm 

5 tháng 5 2017

mình k hiểu cho lắm dong thứ 2

1 tháng 12 2019

Gọi d là ƯCLN của 2n+1 và 3n+1

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}\Rightarrow}\left(6n+3\right)-\left(6n+2\right)⋮d}\Rightarrow1⋮d\)

=> Đpcm

1 tháng 12 2019

cảm ơn nhé

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

6 tháng 8 2021

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

7 tháng 3 2020

Gọi hai số liên tiếp lần lượt là a và a+1

Gọi UCLN(a, a+1)=d

=>a+1 chia hết cho d và a chia hết cho d

=> a+1-a=1 chia hết cho d vậy d=1

=> UCLN(a, a+1)=1

Vậy a và a+1 là hai số nguyên tố cùng nhau

7 tháng 3 2020

Gọi UCLN của 2n+5 và 3n+7 là d

=> 2n+5 chia hết cho d và 3n+7 chia hết cho d

=> 6n+15 chia hết cho d và 6n+14 chia hết cho d

=> 6n+15-6n-14=1 chia hết cho d

vậy d=1

Thì UCLN(2n+5, 3n+7)=1

=> 2n+5 và 3n+7 là 2 số tự nhiên liên tiếp