K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 1:
Ta thấy:

\(\Delta=(m+1)^2-4(m-\frac{1}{3})=m^2-2m+1+\frac{4}{3}=(m-1)^2+\frac{4}{3}>0, \forall m\)

Do đó pt luôn có nghiệm với mọi $m$

Bài 2:

\(\Delta'=(m-1)^2-(m-3)=m^2-3m+4=(m-\frac{3}{2})^2+\frac{7}{4}>0, \forall m\)

Do đó pt luôn có nghiệm với mọi $m$

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bài 3:

- Nếu $m-1=0$ thì PT trở thành:

$x+1=0\Rightarrow x=-1$ là nghiệm của pt

- Nếu $m-1\neq 0$. Pt là pt bậc 2 ẩn $x$

Ta thấy: \(\Delta=(3m-2)^2-4(m-1)(3-2m)=17m^2-32m+16=m^2+16(m-1)^2\geq 0, \forall m\)

Do đó nếu $m-1\neq 0$ thì pt luôn có nghiệm.

Tóm lại pt luôn có nghiệm với mọi $m$

23 tháng 12 2019

hihi

1 tháng 1 2020

1/ \(\Delta'=\left(m+1\right)^2-2m^2-m-3=m^2+2m+1-2m^2-m-3\)

\(=-m^2+m-2=-\left(m^2-m+\frac{1}{2}\right)-\frac{3}{2}\le-\frac{3}{2}\)

=> pt vô nghiệm với mọi m

2/ Vì \(m^2+1\ge1\forall m\)

\(\Rightarrow\Delta'=\left(m+2\right)^2-6\left(m^2+1\right)\)

\(=m^2+4m+4-6m^2-6=-5m^2+4m-2\)

\(=-5\left(m^2+\frac{4}{5}m+\frac{4}{25}\right)-\frac{6}{5}\le-\frac{6}{5}\)

=> pt vô nghiệm với mọi m

3/\(\Delta'=\left(m-3\right)^2-2m^2+7m-10\)

\(=m^2-6m+9-2m^2+7m-10=-m^2+m-1\)

\(=-\left(m^2-m+\frac{1}{4}\right)-\frac{3}{4}\le-\frac{3}{4}\)

=> pt vô nghiệm với mọi m

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

7 tháng 5 2020

giúp mình mấy bài nữa đi

\n
NV
7 tháng 5 2020

d/

\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

e/

\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)

\(\Leftrightarrow m^2-2m+5< 0\)

\(\Leftrightarrow\left(m-1\right)^2+4< 0\)

Không tồn tại m thỏa mãn

f/

\(m=1\) pt vô nghiệm (thỏa mãn)

Với \(m\ne1\)

\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

Vậy \(0< m\le1\)

NV
7 tháng 5 2020

g/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)

\(\Rightarrow m\ge3\)

h/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)

NV
7 tháng 5 2020

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)

f/

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)

NV
22 tháng 2 2020

Để BPT nghiệm đúng với mọi x thì:

a/ \(\left\{{}\begin{matrix}2m^2-3m-2< 0\\\Delta'=\left(m-2\right)^2+2m^2-3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-2< 0\\3m^2-7m+2\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{2}< m< 2\\\frac{1}{3}\le m\le2\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}\le m< 2\)

b/ \(\left(m+4\right)x^2-2mx+2m-6< 0\)

\(\left\{{}\begin{matrix}m+4< 0\\\Delta'=m^2-\left(m+4\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\-m^2-2m+24< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\\left[{}\begin{matrix}m< -6\\m>4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)