K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

13 tháng 9 2018

2 câu cuối ko rõ đề

13 tháng 9 2018

a) \(9x^2-6x+2=\left(9x^2-6x+1\right)+1\)

\(=\left(3x-1\right)^2+1>0\)

b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

2)

\(-9x^2+12x-15=-\left(9x^2-12x+15\right)\)

\(=-\left(9x^2-12x+4+11\right)\)

\(=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le-11< 0\)

13 tháng 9 2018

bn ơi bài này hình như cần ns khi nào x=0 nữa chứ pải k?

8 tháng 9 2019

a) \(P=2x-x^2-2\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Vì \(-\left(x-1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-1\le0-1;\forall x\)

Hay \(P\le-1< 0;\forall x\)

Vậy biểu thức P luôn có giá trị âm với mọi x

b)  \(Q=-x^2-y^2+8x+4y-21\)

\(=-\left(x^2-8x+16\right)-\left(y^2-4y+4\right)-1\)

\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)

Vì \(\hept{\begin{cases}-\left(x-4\right)^2\le0;\forall x,y\\-\left(y-2\right)\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0;\forall x,y\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0-1;\forall x,y\)

Hay \(Q\le-1< 0;\forall x,y\)

Vậy biểu thức Q luôn âm với mọi gt của x,y

link tham khảo 

link https://olm.vn/hoi-dap/detail/83120416222.html

hok tốt

12 tháng 9 2020

a) 6x - x2 - 5

= -x2 + 6x - 9 + 4

= -( x2 - 6x + 9 ) + 4

= -( x - 3 )2 + 4 ≤ 4 ∀ x ( chưa kl luôn âm được :)) )

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

Bài 2: 

a: \(=x^{n+19-14}=x^{n+5}\)

b: \(=x^{94-17-65}=x^{12}\)

2 tháng 7 2016

a/x^4 lớn hơn hoặc = 0 

x^2 lớn hơn hoặc = 0

2 > 0

=> x^4+x^2+2 >0 => bieu thức luôn dương

b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954 

ta có : (x-4)^2 lớn hơn hoặc = 0

           1954 >0

=> (x-4)^2+1954>0 => bt luôn dương

Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha

2 tháng 7 2016

\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)

Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)

\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm

25 tháng 9 2016

a) \(-9x^2+12x-15\)

\(=-9x^2+12x-4-11\)

\(=-\left(9x^2-12x+4\right)-11\)

\(=-\left(3x-2\right)^2-11\)

Có: \(-\left(3x-2\right)^2\ge0\Rightarrow-\left(3x-2\right)^2-11\le-11\)

\(\Rightarrow-\left(3x-2\right)^2-11< 0\)

b) \(-5-\left(x-1\right)\left(x+2\right)\)

\(=-5-\left(x^2+x-2\right)\)

\(=-5-x^2-x+2\)

\(=-3-x^2-x\)

\(=-\left(3+x^2+x\right)\)

Có: \(x^2+x\ge0\Rightarrow3+x^2+x\ge3\)

\(\Rightarrow-\left(3+x^2+x\right)\le-3\)

\(\Rightarrow-\left(3+x^2+x\right)< 0\)

25 tháng 9 2016

thanks!!!!!!!!!!!

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...