Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x
câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x
a) 6x - x2 - 5
= -x2 + 6x - 9 + 4
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4 ≤ 4 ∀ x ( chưa kl luôn âm được :)) )
a) \(-2x^2+2x+1>0\)
\(-\left(2x^2-2x-1\right)>0\)
nhân 2 vế với (-1)=> đổi dấu sao sánh
\(\Leftrightarrow2x^2-2x-1< 0\)
\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)
ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)
b) \(9x^2-6x+2>0\)
<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)
<=>\(\left(3x-1\right)^2+1>0\)(1)
vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1) luôn đúng ( bạn lí giải tương tự như trên nha)
c)\(-4x^2-4x-2< 0\)
\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)
nhân 2 vế với (-1)=> đổi dấu so sánh
\(4x^2+4x+2>0\)
\(\Leftrightarrow\left(2x+1\right)^2+1>0\)
lí giải tương tự như trên
=> đpcm
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2
\(9x^2-12xy+16y^2\)
\(=\left(3x\right)^2-2.\left(3x\right)\left(4y\right)+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
\(P=\frac{x^2}{4}+x^2+1=\left(\frac{x}{2}\right)^2+2.x^2.\frac{1}{2}+1=\left(\frac{x}{2}+1\right)^2\)
2, a, \(9x^2-12x+9=\left(3x\right)^2-2.3.x.3+3^2=\left(3x-3\right)^2\ge0\)
A = x2 - x + 1
A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)
A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
B = (x - 2)(x - 4) + 3
B = x2 - 4x - 2x + 8 + 3
B = x2 - 6x + 11
B = x2 - 2.3.x + 9 + 3
B = \(\left(x-3\right)^2+3>0\)
C = 2x2 - 4xy + 4y2 + 2x + 5
C = (x2 - 4xy + 4y2) + x2 + 2x + 5
C = (x - 2y)2 + (x2 + 2x + 1) + 4
C = (x - 2y)2 + (x + 1)2 + 4
Xét biểu thức C thấy :
Có 2 hạng tử không âm (vì là bình phương)
Vậy C > 0
a) \(9x^2-6x+2=\left(9x^2-6x+1\right)+1\)
\(=\left(3x-1\right)^2+1>0\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
2)
\(-9x^2+12x-15=-\left(9x^2-12x+15\right)\)
\(=-\left(9x^2-12x+4+11\right)\)
\(=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le-11< 0\)
bn ơi bài này hình như cần ns khi nào x=0 nữa chứ pải k?