Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Ta có: \(x^2-2x+3< -2x+3\)
\(\Rightarrow x^2< 0\)
=> vô lý
=> vô nghiệm
b) \(x^2+2x+2\le0\)
\(\Leftrightarrow\left(x+1\right)^2+1\le0\)
\(\Rightarrow\left(x+1\right)^2\le-1\)
=> vô lý
=> vô nghiệm
a) \(x^2+1\ge1\)
\(\Rightarrow x^2+1< 1\)( Vô lí )
=> BPT vô nghiệm
b) \(x^2+2x< 2x\)
\(\Leftrightarrow x^2+2x-2x< 0\)
\(\Leftrightarrow x^2< 0\)( vô lí )
Vậy BPT vô nghiệm
c) \(x^2-2x+3< -2x+3\)
\(\Leftrightarrow x^2-2x+3+2x-3< 0\)
\(\Leftrightarrow x^2< 0\)
Vậy,,,,,,,,,,,,,,,,,,,
a, \(x^2+1< 1\)(*)
Ta có : \(x^2\ge0< =>x^2+1\ge1\)
Nên không thể bé hơn 1
Nên (*) vô lí
b, \(x^2+2x< 2x\)(**)
Ta có : \(x^2\ge0< =>x^2+2x\ge2x\)
Nên không thể bé hơn 2x
Nên (**) vô lí
c, \(x^2-2x+3< -2x+3\)
\(< =>x^2-2x+2x+3-x< 0\)
\(< =>x^2< 0\)( vô lí )
tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
a,A= x(x3-5x2+7x-3)
=x(x3-3x2-2x2+6x+x-3)
=x(x-3)(x2-2x+1)
=x(x-3)(x-1)2
vi (x-1)2>=0
=>Để A <0 thì x(x-3)<0
TH1:x>0 va x-3<0
x>0 va x<3
=> 0<x<3
TH2 :x<0 va x-3>0
x<0 và x>3( loại vỉ 2 dk trái ngược nhau )
Vay 0<x<3 thi thoa man....... .........
Phần b tương tự
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
a) 4x2 - 4x + 5
= 4x2 - 4x + 1 + 4
= ( 2x - 1 )2 + 4
\(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+4\ge4>0\forall x\)( trái với đề bài )
=> BPT vô nghiệm ( đpcm )
b) x2 + x + 1
= x2 + 1/2x + 1/4 + 3/4
= ( x + 1/2 )2 + 3/4
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( trái với đề bài )
=> BPT vô nghiệm ( đpcm )
Bài làm:
a) Ta có: \(4x^2-4x+5=\left(4x^2-4x+1\right)+4=\left(2x-1\right)^2+4\ge4>0\left(\forall x\right)\)
Kết hợp với đề bài => vô lý
=> BPT vô nghiệm
b) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Kết hợp với đề bài => vô lý
=> BPT vô nghiệm
a) 2x2 - 4x + 5
= 2( x2 - 2x + 1 ) + 3
= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 10
= -x2 + 6x - 9 - 1
= -( x2 - 6x + 9 ) - 1
= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
d) -x2 + 3x - 3
= -x2 + 3x - 9/4 - 3/4
= -( x2 - 3x + 9/4 ) - 3/4
= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
e) \(\frac{x^2+4x+5}{2}>0\)
Vì 2 > 0
=> x2 + 4x + 5 > 0
=> x2 + 4x + 4 + 1 > 0
=> ( x + 2 )2 + 1 > 0 ( đúng )
=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )
f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)
Vì x2 + 1 ≥ 1 ∀ x
=> -6 + 2x - x2 < 0
=> -x2 + 2x - 1 - 5
= -( x2 - 2x + 1 ) - 5
= -( x - 1 )2 - 5 < 0 ( đúng )
=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )
a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)
Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)
Hay :\(2x^2-4x+5>0\)
Vậy nên BPT luôn đúng với mọi số thực x
b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)
Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)
Hay \(-x^2+6x-10\le-1\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)
Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)
Hay \(-x^2+3x-3\le0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
2 câu còn lại bạn nào làm giúp mình nha
Bài làm:
a) Ta có: \(x^2+1< 1\)
\(\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\left(\forall x\right)\)
=> vô lý
=> BPT vô nghiệm
b) \(x^2+2x< 2x\)
\(\Rightarrow x^2< 0\)
tương tự a BPT vô nghiệm
a, \(x^2+1< 1\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\forall x\)=> đpcm
b, \(x^2+2x< 2x\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\forall x\)=> đpcm