K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)

=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1

- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1

- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.

25 tháng 5 2017

2 : 3 thì dư 1

2 : 3 thì dư 1

2 : 3 thì dư 0

2 : 3 thì dư 1

30 tháng 9 2019

n^2 chia cho:

+) 3 dư 0,1

+) 4 dư 0,1,3 (tương tự)

n^3:

+)7 dư 0,1,6

+) 5 dư 0,1,2,3,4

Bạn muốn giải chi tiết thì đặt n=3k;3k+1 chẳng hạn

10 tháng 2 2020

Gọi số nguyên đó là a. Ta cần chứng minh

a3+11a⋮6a3+11a⋮6

Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6

Vậy ta có đpcm.

10 tháng 2 2020

Lời giải:

Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6

Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n

A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n

Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2

⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3

Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3

Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6

Mà 12n⋮612n⋮6

⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6

Ta có đpcm.

18 tháng 12 2021

Bài 1

Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42

             =(x2+5xy+4y2)(x2+5xy+6y2)+42

 Đặt x2+5xy+5y2=t (t thuộc Z)

Khi đó A=(t-1)(t+1)+42

           A=t2-12+42

           A=(x2+5xy+5y2)2-12+42

Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z

Suy ra x2+5xy+5y2 thuộc Z

Suy ra (x2+5xy+5y2)2 là số chính phương

Ta lại có 12 và 42 cũng là số chính phương

Suy ra A là số chính phương (đpcm)

Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu. 

 

15 tháng 3 2017

tìm x,y,z nguyên tố thỏa \(x^3+y^3=2z^3\)