Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )
c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
A=x2-2x+2
A=(x2-2x+1)+1
A=(x-1)2+1
(x-1)2\(\ge\)0 với mọi x
=> (x-1)2+1 >0 hay A>0
Vậy A luôn dương với mọi x,y,z
B=x2+y2+z2+4x-2y-4z+10
B=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
B=(x+2)2+(y-1)2+(z-2)2+1
(x+2)2\(\ge\)0 với mọi x
(y-1)2\(\ge\)0 với mọi y
(z-2)2\(\ge\)0 với mọi z
=>(x+2)2+(y-1)2+(z-2)2+1>0 hay B>0
Vậy B luôn dương với mọi x,y,z
C=x2+y2+2x-4y+6
C=(x2+2x+1)+(y2-4y+4)+1
C=(x+1)2+(y-2)2+1
(x+1)2\(\ge\)0 với mọi x
(y-2)2\(\ge\)0 với mọi y
=>(x+1)2+(y-2)2+1>0 hay C>0
Vậy C luôn dương với mọi x,y,z
a/ \(A=x^2-2x+2\\A=x^2-2x+1+1\\ A=\left(x-1\right)^2+1>0 \)
b/ \(B=x^2+y^2+z^2+4x-2y-4z+10\)
\(B=x^2+4x+4+y^2-2y+1+z^2-4z+4+1\)
\(B=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)
c/ \(C=x^2+y^2+2x-4y+6\)
\(C=x^2+2x+1+y^2-4y+4+1\)
\(C=\left(x+1\right)^2+\left(y-2\right)^2+1>0\)
A=x 2−2x+2
=x2-2x+1+1
=(x2-2x+1)+1
=(x-1)2+1
vì (x-1)2\(\ge0\forall x\)
=>(x-1)2+1\(\ge1\)
vậy A luôn dương với mọi x
B=x2+y2+2x−4y+6
=x2+2x+1+y2-4y+4+1
=(x2+2x+1)+(y2-4y+4)+1
=(x+1)2+(y-2)2+1
do (x+1)2\(\ge0\forall x\)
(y-2)2\(\ge0\forall y\)
=>(x+1)2+(y-2)2\(\ge0\)
=>(x+1)2+(y-2)2+1\(\ge1\)
=>B\(\ge1\)
vậy B luôn dương với mọi x;y
C= x2+y2+z2+4x−2y−4z+10
=x2+4x+4+y2-2y+1+z2-4z+4+1
=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
=(x+2)2+(y-1)2+(z-2)2+1
do (x+2)2\(\ge0\forall x\)
(y-1)2\(\ge0\forall y\)
(\(\)z-2)2\(\ge0\forall z\)
=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)
=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)
=>C\(\ge1\)
vậy C luôn dương với mọi x;y;z
bài 2: tìm x
a)\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1; y=-2
b)\(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy x=2; y=3
Có : x^2+y^2+z^2+4x-2y-4z+10
= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1
= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1
=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z
\(x^2+y^2+z^2+4x-2y-4z+10\)
\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)
\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)
\(\Rightarrow\)\(đpcm\)