Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+) \(A\left(n\right)=3^n+63⋮9\) với n > = 2
+) Vì n chẵn nên đặt n = 2k và k nguyên dương
\(A\left(n\right)=3^n+63=3^{2k}-1+64\)
Vì \(3^{2k}-1=9^k-1⋮\left(9-1\right)\Rightarrow3^{2k}-1⋮8\) và 64 chia hết cho 8
=> \(A\left(n\right)=3^n+63⋮8\)
Lại có: ( 8; 9) = 1 và 8.9 = 72
=> \(A\left(n\right)⋮72\) với n số tự nhiên chẵn và lớn hơn hoặc bằng 2.
a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n
Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )
Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)
b, Ta có : \(168=2^3.3.7\)
- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )
\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\) (1)
- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 )
Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\) (2)
- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )
nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)
Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)
hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)
hiểu dấu ":" là kí hiệu đồng dư nhé
32 : 9 (mod72)
gọi n=2k
do n chẵn nên 3n : 9 (mod 72)
3n+63:9+63:72
=>3n+63 chia hết cho 72