K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

hiểu dấu ":" là kí hiệu đồng dư nhé

32 : 9 (mod72)

gọi n=2k 

do n chẵn nên 3: 9 (mod 72)

3n+63:9+63:72

=>3n+63 chia hết cho 72

28 tháng 4 2020

Ta có: 

+) \(A\left(n\right)=3^n+63⋮9\) với n > = 2 

+) Vì n chẵn nên đặt n = 2k  và k nguyên dương

 \(A\left(n\right)=3^n+63=3^{2k}-1+64\)

Vì \(3^{2k}-1=9^k-1⋮\left(9-1\right)\Rightarrow3^{2k}-1⋮8\) và 64 chia hết cho 8 

=> \(A\left(n\right)=3^n+63⋮8\)

Lại có: ( 8; 9) = 1 và 8.9 = 72

=> \(A\left(n\right)⋮72\) với n số tự nhiên  chẵn và lớn hơn hoặc bằng 2.

6 tháng 8 2017

Đăng ít thôi.

6 tháng 8 2017

==" nghĩ mấy cía này của lớp 78 chứ sao lại 6

9 tháng 3 2019

a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n

Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )

Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)

b, Ta có : \(168=2^3.3.7\)

- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )

\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\)     (1)

- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 ) 

Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\)   (2)

- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )

nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)

Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)

hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)

13 tháng 4 2020

n lớn hơn 1 nhé