Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = \(\sqrt[3]{1+6-5\sqrt{2}}+\sqrt[3]{1+6+5\sqrt{2}}\)
\(=\sqrt[3]{1-3\sqrt{2}+6-2\sqrt{2}}+\sqrt[3]{1+3\sqrt{2}+6+2\sqrt{2}}\)
\(=\sqrt[3]{\left(1-\sqrt{2}\right)^3}+\sqrt[3]{\left(1+\sqrt{2}\right)^3}\)
\(=1-\sqrt{2}+1+\sqrt{2}\)
\(=2\)
Vậy: A luôn là số tự nhiên
Đặt: \(A=\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\)
\(A^3=7-\sqrt{50}+7+\sqrt{50}+3.\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right).\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\)\(A^3=14-3A\)
\(A^3+3A-14=0\)
\(A^3-2A^2+2A^2-4A+7A-14=0\)
\(A^2\left(A-2\right)+2A\left(A-2\right)+7\left(A-2\right)=0\)
\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Rightarrow A-2=0\) ( Do: \(A^2+2A+7>0\) )
\(\Rightarrow A=2\)
\(\Rightarrow A\) \(\in N\)
Cách khác nè :3
\(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}=\sqrt[3]{1-3\sqrt{2}+3.2-2\sqrt{2}}+\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}=\sqrt[3]{\left(1-\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}+1\right)^3}=1-\sqrt{2}+\sqrt{2}+1=2\)Vậy , biểu thức trên là một số tự nhiên .
\(\sqrt[3]{7+\sqrt{50}}+\sqrt[3]{7-\sqrt{50}}\)
\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}+\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
a. \(\sqrt{50}-\sqrt{3}.\sqrt{6}+\frac{\sqrt{22}}{\sqrt{11}}=5\sqrt{2}-3\sqrt{2}+\sqrt{2}=3\sqrt{2}\)
b. \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\sqrt{7+4\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}=\sqrt{2}\)
a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)
b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)
\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)
Bài 1: Rút gọn
a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)
\(=3-1-\sqrt{6}+\sqrt{2}\)
\(=2-\sqrt{2}-\sqrt{6}\)
b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{5}\)
c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)
\(=14-\sqrt{392}+7+\sqrt{392}\)
=21
d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)
\(=16\sqrt{5}\)
\(A^3=14+3\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right)\)
\(A^3=14+3\sqrt[3]{49-50}.A\)\(\Leftrightarrow\)\(A^3=14-3A\)
\(\Leftrightarrow\)\(A^3+3A-14=0\)\(\Leftrightarrow\)\(A\left(A^2-4\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(A\left(A-2\right)\left(A+2\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Leftrightarrow\)\(A=2\) ( do \(A^2+2A+7=\left(A+1\right)^2+6>0\) )