Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(1000\equiv1\left(mod3\right)\Rightarrow1000^{2016}\equiv1\left(mod3\right)\Rightarrow1000^{2016}-1\equiv0\left(mod3\right)\)
=>10002016-1 chia hết cho 3
\(1986\equiv0\left(mod3\right)\Rightarrow1986^{2016}\equiv0\left(mod3\right)\Rightarrow1986^{2016}-1\equiv-1\left(mod3\right)\)
=>19862016-1 không chia hết cho 3
\(A=\frac{1986^{2014}-1}{1000^{2014}-1}\) có mẫu số chia hết cho 3, tử số không chia hết cho 3=>tử số không chia hết cho mẫu số=>A không thể là số nguyên
Dễ có:\(1986⋮3\Rightarrow1986^{2016}⋮3\Rightarrow1986^{2016}-1\) không chia hết cho 3
\(1000\) chia 3 dư 1\(\Rightarrow1000^{2010}\) chia 3 dư 1 \(\Rightarrow1000^{2010}-1⋮3\)
Do \(MS\) chia hết cho 3;\(TS\) không chia hết cho 3
\(\Rightarrow A=\frac{1986^{2016}-1}{1000^{2010}-1}\notin Z\)
CMR:A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên
+)Giả sử :A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)là số nguyên
+)Ta thấy 1986\(⋮\)3=>19862016\(⋮\)3=>19862016-1\(⋮̸\)3(1)
+)Ta lại thấy :1000 chia 3 dư 1 =>10002010\(⋮̸\)3=>10002010-1\(⋮\)3(2)
Từ (1) và (2)
=>19862016-1\(⋮̸\)10002010-1
=>A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên ( trái với giả sử )
Vậy :A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên
Chúc bn học tốt
CMR:A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên
+)Giả sử A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)là số nguyên
+)Ta có:1986\(⋮\)3=>19862016\(⋮\)3=>19862016-1\(⋮̸\)3(1)
+)Ta lại có:1000 chia 3 dư 1 3=>10002016chia 3 dư 1=>10002016-1\(⋮\)3(2)
Từ (1) và (2)
=>19862016-1\(⋮̸\)10002016-1
=>A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên (trái với giả sử )
Vậy A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên
Chúc bn học tốt
Ta có :
Thay \(a+b+c=2016\) vào A ta có :
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(A>1\)\(\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
Ta có:
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
tự làm tiếp nhé!
\(A=\frac{1968^{2004}-1}{1000^{2004}-1}=\frac{1968}{1000}=\)\(1,986\)
Vì \(1,986\notin Z\)
\(\Rightarrow A=\frac{1986^{2004}-1}{1000^{2004}-1}\)không thể là số nguyên
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
Vì 1986 chia hết cho 3
=>19862016 chia hết cho 3
vậy 19862016 -1 không chia hết cho 3
Vì 1000 chia 3 dư 1
=>10002016 chia 3 dư 1
Vậy 10002016 -1 chia hết cho 3
Vì tử không chia hết cho 3 mà mẫu chia hết 3
=> A không thể là 1 số nguyên