K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2024

a2+ab+b23=25⇒a2+ab+b2325=1a2+ab+b23=25⇒a2+ab+b2325=1

Tương tự :c2+b239=1;a2+ac+c216=1c2+b239=1;a2+ac+c216=1

Áp dụng t/c dãy tỉ số bằng nhau , ta có

c2+b239=a2+ac+c216=2c2+ac+b23+a225c2+b239=a2+ac+c216=2c2+ac+b23+a225

⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23

⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c (đpcm)

 

28 tháng 10 2016

theo bài ra, ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

áp dụng tính chất ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c+-a+b+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\)

=> a + b - c = c => a + b = 2c (1)

=> a - b +c = b => a+c = 2b (2)

=> -a +b +c = a => b + c = 2a (3)

thay 1, 2 và 3 vào biểu thức M ta có:

\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

vậy M = 8

28 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{c+b+a}\)

\(=\frac{a+b+c}{a+b+c}\left(1\right)\)

Xét 2 trường hợp:

  • TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)

Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)

  • TH2: \(a+b+c\ne0\)

Từ (1) => \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\)

Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=8\)

 

10 tháng 9 2020

a) \(b>0,d>0\) nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\hept{\begin{cases}ab+ad< bc+ab\\cd+ad< bc+cd\end{cases}\Leftrightarrow\hept{\begin{cases}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}< \frac{a+c}{b+d}\\\frac{a+c}{b+d}< \frac{c}{d}\end{cases}}\)----> ĐPCM

b) \(\frac{1}{3}=\frac{4}{12},\frac{1}{4}=\frac{4}{16}\)Vậy 3 số hữu tỉ cần tìm là \(\frac{4}{13},\frac{4}{14},\frac{4}{15}\)

13 tháng 7 2019

1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)

\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)

\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)

\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)

\(\Leftrightarrow-zy+x^2=-x^2+yz\)

\(\Leftrightarrow-2x^2=-2zy\)

\(\Leftrightarrow x^2=yz\)(đpcm)

12 tháng 7 2016

1.

Nếu \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)

\(\Leftrightarrow ad< cd\left(dpcm\right)\)

2

Nếu \(ad< bc\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow\frac{a}{b}< \frac{c}{d}\left(dpcm\right)\)

23 tháng 12 2018

vì a/b=c/d =>a/c=b/d

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/c=b/d=a+b/c+d=a-b/c-d

vi a+b/c+d=a-b/c-d

=>a-b/a+b=c-d/c+d(dpcm)

- vì a/b=c/d=>a/c=b/d=>7a/7c=4b/4d

vì a/c=c/d=>3a/3c=5b/5d

áp dụng tính chất của dãy tỉ số bằng nhau ta có

a/c=b/d=7a-4b/7c-4d=3a+5b/3c+5d

vì 7a-4b/7c-4d=3a+5b/3c+5d

=>7a-4b/3a+5b=7c-4d/3c+5d(dpcm)

- vì a/b=c/d=>a/c=b/d=>a2/c2=b2/d2=ab/cd(1)

áp dụng tính chất của dãy tỉ số bằng nhau ta có 

a2/c2=b2/d2=a2+b2/c2+d(2)

a/c=b/d=c-a/d-b=>a2/c2=b2/d2=(c-a)2/(d-b)(3)

​từ(1),(2) và (3)=>ac/bd=a2+c2/b2+d2=(c-a)2/(d-b)2