K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

** Bổ sung điều kiện $a,b,c>0$.

Áp dụng BĐT Cô-si cho các số dương:

$(a+b)(b+2c)(c+4a)=(a+\frac{b}{2}+\frac{b}{2})(b+c+c)(c+2a+2a)$
$\geq 3\sqrt[3]{a.\frac{b}{2}.\frac{b}{2}}.3\sqrt[3]{bc^2}.3\sqrt[3]{c.2a.2a}=27abc$
Ta có đpcm

Dấu "=" xảy ra khi $b=c=2a$

19 tháng 9 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)

\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)

\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)

\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)

b)\(\text{Tương tự*}\)

a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)

\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)

\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)

\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)

31 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b+2c = b/c+2a = c/a+2b = a+b+c/3a+3b+3c = 1/3

=> a=1/3.(b+2c) ; b=1/3.(c+2a) ; c=1/3.(a+2b)

=> a=b=c

Khi đó : S = a+2a/3a + 2a+4a/5a + 3a+6a/7a = 122/35

k mk nha

31 tháng 12 2017

giúp vs

5 tháng 11 2017

Ta có: \(4a=3b=2c\Rightarrow\frac{4a}{12}=\frac{3b}{12}=\frac{2c}{12}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{3+4+6}=\frac{169}{13}=13\)

\(\frac{a}{3}=13\Rightarrow a=39;\frac{b}{4}=13\Rightarrow b=52;\frac{c}{6}=13\Rightarrow c=78\)

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)

b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)