Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
@Hà Nhung Huyền Trang
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
P/s: Tham khảo nhé
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)
\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)
Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)
Hay \(A>0\)(đpcm)
Tuyển tập Bất đẳng thức Trần Sĩ Tùng 4 III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki 1. Chứng minh: (ab + cd)2 £ (a2 + c2)(b2 + d2) BĐT Bunhiacopxki 2. Chứng minh: + £sinx cosx 2 3. Cho 3a – 4b = 7. Chứng minh: 3a2 + 4b2 ³ 7. 4. Cho 2a – 3b = 7. Chứng minh: 3a2 + 5b2 ³ 72547. 5. Cho 3a – 5b = 8. Chứng minh: 7a2 + 11b2 ³ 2464137. 6. Cho a + b = 2. Chứng minh: a4 + b4 ³ 2. 7. Cho a + b ³ 1 Chứng minh: + ³2 2 1a b2 Lời giải: I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 (*) (*) Û + +æ ö- ³ç ÷è ø33 3a b a b02 2 Û ( )( )+ - ³23a b a b 08. ĐPCM. 2. Chứng minh: + +£ 2 2a b a b2 2 («) ÷ a + b £ 0 , («) luôn đúng. ÷ a + b > 0 , («) Û + + +- £2 2 2 2a b 2ab a b04 2 Û ( )- ³2a b04 , đúng. Vậy: + +£ 2 2a b a b2 2. 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 Û ( )+ +£3 3 3a b a b8 2 Û ( )( )- - £2 23 b a a b 0 Û ( ) ( )- - + £23 b a a b 0, ĐPCM. 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a («) («) Û + ³ +a a b b a b b a Û ( ) ( )- - - ³a b a a b b 0 Û ( )( )- - ³a b a b 0 Û ( ) ( )- + ³2a b a b 0, ĐPCM. 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b («) Trần Sĩ Tùng Tuyển tập Bất đẳng thức 1 PHẦN I: LUYỆN TẬP CĂN BẢN I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 2. Chứng minh: + +£ 2 2a b a b2 2 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b 6. Chứng minh: ( )+ + + ³ + +2 2 2a b c 3 2 a b c ; a , b , c Î R 7. Chứng minh: ( )+ + + + ³ + + +2 2 2 2 2a b c d e a b c d e 8. Chứng minh: + + ³ + +2 2 2x y z xy yz zx 9. a. Chứng minh: + + + +³ ³a b c ab bc ca; a,b,c 03 3 b. Chứng minh: + + + +æ ö³ ç ÷è ø22 2 2a b c a b c3 3 10. Chứng minh: + + ³ - +22 2ab c ab ac 2bc4 11. Chứng minh: + + ³ + +2 2a b 1 ab a b 12. Chứng minh: + + ³ - +2 2 2x y z 2xy 2xz 2yz 13. Chứng minh: + + + ³ - + +4 4 2 2x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ³ 1 thì: + ³3 3 1a b4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh: a. ab + bc + ca £ a2 + b2 + c2 < 2(ab + bc + ca). b. abc ³ (a + b – c)(a + c – b)(b + c – a) c. 2a2b2 + 2b2c2 + 2c2a2 – a4 – b4 – c4 > 0
Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác
Do đó ta có đpcm.