Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1/3+1/32+...+1/32017 <1/2
3B=1+1/3+1/32+...1/32016 <1/2
3B-B=(1+1/3+...+1/32016) - (1/3+1/32+...+1/32017)
2B=1-(1/32017)
2B=(32017-1) phần (32017)=>B=(32017-1):2 phần (32017)
Vậy ..........................
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A< 1-\frac{1}{2017}=\frac{2016}{2017}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{2016}{2017}\left(đpcm\right)\)
Ta có :
\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\)
\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\)
\(2S-S=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\right]\)
\(S=1-\left(\frac{1}{2}\right)^{2017}< 1\)
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
\(A=\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{2016}{2^{2017}}\\ 2A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2016}{2^{2016}}\\ 2A-A=\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2016}{2^{2016}}\right)-\left(\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{2016}{2^{2017}}\right)\\ A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}-\dfrac{2016}{2^{2017}}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2016}{2^{2016}}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2016}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}-\dfrac{2016}{2^{2017}}\right)\\ A=1-\dfrac{2017}{2^{2016}}-\dfrac{2016}{2^{2017}}\\ A=1-\dfrac{4034}{2^{2017}}-\dfrac{2016}{2^{2017}}\\ A=1-\left(\dfrac{4034}{2^{2017}}+\dfrac{2016}{2^{2017}}\right)\\ A=1-\dfrac{6050}{2^{2017}}< 1\)
Vậy \(A< 1\)
TA CÓ:
A = \(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)
=> 2A = \(\frac{2.1}{2^2}+\frac{2.2}{2^3}+...+\frac{2016.2}{2^{2017}}\)
= \(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2016}{2^{2016}}\)
=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
ĐẶT B = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
TA CÓ 2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
=> 2B - B = B = \(1-\frac{1}{2^{2016}}< 1\)
=> A < 1 ( ĐPCM)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)\)
\(A=1-\frac{1}{2^{2017}}< 1\)
\(=>đpcm\)
Ủng hộ mk nha ^_-