Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất (4n+1;6n+1)=d
->4n+1 chia hết cho d; 6n+1 chia hết cho d
Vì 4n+1 chia hết cho d
->3(4n+1) chia hết cho d
->12n+3 chia hết cho d
Vì 6n+1 chia hết cho d
->2(6n+1) chia hết cho d
->12n+2 chia hết cho d
Xét hiệu:12n+3-(12n+2) chia hết cho d
12n+3-12n-2 chia hết cho d
1 chia hết cho d
->d thuộc Ư(1)
Ư(1)={1;-1}
-> ước chung lớn nhất(4n+1;6n+1)={1;-1}
Vậy với mọi n thuộc N, phân số 4n+1/6n+1 là phân số tối giản.
(VÌ PHẤN SỐ TỐI GIẢN LUÔN CÓ ƯỚC CHUNG LỚN NHẤT LÀ 1 VÀ -1 BẠN Ạ)
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
Lời giải:
a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$
$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$
$\Rightarrow 2n+7-2(n+3)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.
b.
Gọi $d$ là ƯCLN $(4n+6, 6n+7)$
$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$
Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.
$\Rightarrow d=1$
$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.
Gọi ƯCLN(4n+1;6n+1)=d
=> 4n+1 chia hết cho d
6n+1 chia hết cho d
=> 3(4n+1) chia hết cho d
2(6n+1) chia hết cho d
=> 12n+3 chia hết cho d
12n+2 chia hết cho d
=> (12n+3)-(12n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 4n+1/6n+1 là phân số tối giản
Chúc bạn học tốt :)) vananh nguyendao
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Gọi d=ƯCLN(-6n+5;4n-3)
=>\(\left\{{}\begin{matrix}-6n+5⋮d\\4n-3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12n-10⋮d\\12n-9⋮d\end{matrix}\right.\)
=>\(12n-10-12n+9⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(-6n+5;4n-3)=1
=>\(\dfrac{-6n+5}{4n-3}\) là phân số tối giản