K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Ta có \(\left(29^m+1\right)\left(29^m+2\right)\left(29^m+3\right)\left(29^m+4\right)\)

 \(\Rightarrow29^m\left(1+2+3+4\right)=29^m\cdot10⋮5\)

19 tháng 10 2017

= 29 m +1 x 29m+2 x 29m+3 x 29m+4

= 29m x (1+2+3+4)

=29mx10 chia hết cho 5

=> 29m + 1 x 29m + 2 x 29m + 3 x 29m + 4 chia hết cho 5

30 tháng 9 2015
 
 

 



a) Theo đề bài ra, ta có : ab¯¯¯+ba¯¯¯=(10a+b)+(10b+a)=11a+11b=11(a+b)� ��11

b) Theo đề bài ra ta có : ab¯¯¯−ba¯¯¯=(10a+b)−(10b+a)=10a+b−10b� ��a=9a−9b=9(a−b)⋮9

22 tháng 2 2021

a, 1+5+5^2+...+5^29

=(1+5)+(5^2+5^3)+...+5^28+5^29)

=(1+5)+5^2(1+5)+...+5^28(1+5)

=6+5^2*6+...+5^28*6

=6(5^2+...+5^28) chia hết cho 6

b, cậu xem lại đề hộ tớ nhaxem chia hết cho 32 hay 31

22 tháng 2 2021

a) M = 1+ 5 +5^2+5^3+....+5^29 có 30 số chia thành 15 cặp mỗi cặp 2 số

= (1+ 5)+5^2(1+5)+.....+5^28(1+5)

= 6.(1 +5^2+...+5^28) chia hết cho 6

b) lỗi hả bạn

21 tháng 2 2021

a, \(M=1+5+5^2+5^3+..+5^{29}\)

\(=\left(1+5\right)+5^2\left(1+5\right)+...+5^{28}\left(1+5\right)\)

\(=6+5^2.6+...+5^{28}.6=6\left(1+5^2+...+5^{28}\right)⋮6\)( đpcm )

10 tháng 8 2017

2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)

Ta có:

\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(x\inƯC\left(51,68\right)\)

\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)

Vì x > 9 nên x = 17

Vậy số chia là 17

10 tháng 8 2017

3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh

b,

\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)

Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N

29 tháng 10 2018

Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)

\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)

29 tháng 10 2018

M = 31 + 32 + 33 +...+ 328 + 329 + 330

M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )

M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)

M = 3 .13 +...+ 328.13

\(\Rightarrow M⋮13\)(đpcm)

   !!!

13 tháng 10 2017

M = 3[1+3+9] + 3\(^4\)[1+3+9] +...+3\(^{28}\)[1+3+9] = 26.[1+ 3\(^4\)+... 3\(^{28}\)]

do 26 chia hết cho 13 => M chia hết cho 13