K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2024

giup minh voi

thanks

 

15 tháng 6 2024

 Số này thậm chí còn không chia hết cho 2 thì làm sao mà chia hết cho 6 được? Bạn xem lại đề nhé.

4 tháng 2 2016

ta có 301293 - 1 chia hết cho 9

chứng minh rồi

4 tháng 2 2016

3012^93 chia hết cho 9 vì 3012^93 chia 9 dư 1 => 3012^93-1 chia hết cho 1 

chứng minh rồi nha

1 tháng 1 2016

c, Ta có 10^21*2 và 20*2 nên 10^21+20*2

10&1 (mod 3) nên 10^21 & 1 ( mod 3) 

nên 10^21+20 & 1+20 (mod 3) & 21 (mod 3 ) & 0 (mod 3) => 10^21+20*3

=> 10^21+20*2.3=6 => 10^21+20*6 

( dấu * là dấu chia hết nhé)

1 tháng 1 2016

a,     8^8 + 2^20

ta có : 8^4 & (-1) (mod 17)  => 8^8 & (-1)^2 (mod 17)  & 1 (mod 17) 

2^2 & (-1) (mod 17)   => 2^16 & (-1) ^4 (mod 17) & 1 ( mod 17) => 2^20 & 1.2^4 (mod 17) & 16 (mod 17) 

=> 8^8 + 2^20 & 1+16 (mod 17) & 0 ( mod 17 )

vậy 8^8 + 2^20 * 17

b,      bạn ơi 10^2015 chia 18 dư 10

c, 10 & 4 (mod 6)  =>  10^21 & 4^21 (mod 6) 

25 tháng 10 2020

a3 +5.a

(1.a)3+5.a=13.a3+5a=Áp dụng ta có 1 nhân với số nào cũng bằng 1 vậy:

13.a3 =1

Vậy a=6 

KIỂM TRA:

63+5.6=216+30=246 :6=41 {\displaystyle a~\vdots ~b} 

Đúng r ó .Ú khoong bt cách giải đúng chuawww nếu chưa cho bò sữa xin lỗi nha .bye ú đi đây!!!

Hokkk toóttttt

22 tháng 7 2016

1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120) 

=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119)  =5 .(4+4^3+..+4^119) 

mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20

2) ta coA=  4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120) 

=4.(1+4+4^2)+...+4^118.(1+4+4^2)  = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21

do  A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420

29 tháng 1 2019

Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)

Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)

Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)

Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)

P/S: bt làm có bài này thôi :v

31 tháng 1 2019

3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(