Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(A=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(A=4^{n-1}\left(4^4+4^3-4^2-4\right)=4^{n-1}.300\).
Vậy .......... (dpcm)
\(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow A⋮300\left(đpcm\right)\)
Vậy...
a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2
=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)
a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3
=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8
vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ
nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8
nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
1, Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n( 32 +1) - 2n(22 + 1) = 10.3n - 5.2n
do n nguyên dương nên : 10.3n chia hết cho 10 và 5.2n chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi n thuộc N*
1) Ta có: A = 3n+2 - 2n+2 + 3n - 2n
=> A = 3n+2 + 3n - (2n+1 + 2n)
=> A = 3n(32 + 1) - 2n(22 + 1)
=> A = 3n.10 - 2n.5
ta thấy : 2nlà 1 số chẵn => 2n.5 \(⋮10\)
3n.10\(⋮10\)
=> \(A⋮10\) với mọi n E N* (đpcm)
2) a) ta có:
8.2n + 2n+1 = 2n( 8 + 2 ) = 2n.10 \(⋮10\)
=> 8.2n + 2n+1 có tận cùng = 0
b) ta có:
3n+3 - 2.3n + 2n+5 - 7.2n = 3n(33 - 2) + 2n(25 - 7)
= \(3^n.25-2^n.25\)
ta thấy: \(3^n.25⋮25\\ 2^n.25⋮25\\ \Rightarrow3^n.25+2^n.25⋮25\)
vậy 3n+3 - 2.3n + 2n+5 - 7.2n chia hết cho 25
Đặt A=\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
A=\(4^{n-1}\left(4^4+4^3-4^2-4\right)\)
A=\(4^{n-1}\cdot300⋮300\)
Ta có:
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}.\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n⋮300\left(đpm\right)\)