Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có n(n+5)-(n-3)(n+2)
= n2+5n-(n2-n-6)
=n2+5n-n2+n+6
= 6n-6
=6(n-1)
=> 6(n-1) chia hết cho 6
hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6
nhớ k giùm mình nha
Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!
Bài 1 :
\(a,\)\(\left(x-4\right)^2-36=0\)\(\Rightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Rightarrow\left(x-10\right)\left(x-2\right)=0\)\(\Rightarrow x\in\left\{10;2\right\}\)
\(b,\)\(\left(x+8\right)^2=121\)\(\Rightarrow\left(x+8\right)^2-11^2=0\)
\(\Rightarrow\left(x+8+11\right)\left(x+8-11\right)=0\)\(\Rightarrow\left(x+19\right)\left(x-3\right)=0\)\(\Rightarrow x\in\left\{-19;3\right\}\)
\(c,x^2+8x+16=0\)\(\Rightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\)\(\Leftrightarrow x=-4\)
\(d,4x^2-12x=-9\)\(\Rightarrow4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)\(\Rightarrow2x-3=0\)\(\Rightarrow x=\frac{3}{2}\)
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
Đặt \(A=\left(n^2+n-1\right)-1\), ta có:
\(A=\left(n^2+n-1\right)-1=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)=\left(n^2+n-2\right)n\left(n+1\right)\) \(\left(a\right)\)
Xét \(B=n^2+n-2=\left(n^2-1\right)+n-1=\left(n-1\right)\left(n+1\right)+n-1=\left(n-1\right)\left(n+2\right)\) \(\left(b\right)\)
Thay \(\left(b\right)\) vào \(\left(a\right)\), khi đó \(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích \(4\) số tự nhiên liên tiếp nên \(A\) có chứa bội của \(2,\) \(3,\) \(4\) nên \(A\) là bội của \(24\)
Do đó, \(A\) chia hết cho \(24\)
Vậy, \(\left(n^2+n-1\right)-1\) chia hết cho \(24\) với \(n\in N\)
Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)
Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)
Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)
Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)
\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)
Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
Chúc sớm tìm được thêm nhiều lời giải nha!
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Theo đề ta có :
n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)
= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)
= n\(^2\) + 5n - n\(^2\) - 2n + 3n + 6
= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6
= 0 + 6n +6
= 6(n+1) luôn luôn chia hết cho 6
Vậy biểu thức n(n + 5) - (n - 3)(n + 2) luôn luôn chia hết cho 6 (đpcm)
k vs kb với mik nhé, 3
#)Giải :
Ta có :
\(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left\{m\left[m^2-1\right]-m\left[n\left(n^2-1\right)\right]\right\}\)
\(=mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)\)
\(m\left(m-1\right)\left(m+1\right)⋮6\left(1\right)\)
\(n\left(n-1\right)\left(n+1\right)⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)⋮6\)
\(\Rightarrow mn\left(m^2-n^2\right)⋮6\)
Mà \(4mn\left(m^2-n^2\right)⋮4\)
\(\Rightarrow4mn\left(m^2-n^2\right)⋮24\left(đpcm\right)\)